Nutrition in the Elderly

Malnutrition in the elderly: Epidemiology and consequences

Tommy Cederholm, MD, PhD
Uppsala University
Sweden
Module 36.1

CONTENTS

– Prevalence of malnutrition in elderly subjects in
 • the community
 • nursing homes
 • hospitals
– Consequences of malnutrition in the elderly
– Micronutrient deficiency
Module 36.1
Prevalence of malnutrition in the community

- **EURONUT-SENECA STUDY (19 towns, 12 countries)**
 - **I** (1988 - 1989) 2600 subjects, aged 70-75 years
 - **BMI ≤ 20**: 4 % (men) - 5 % (women)
 - **Albumin < 35 g/L**: 2 % of subjects
 - **II** (1993 - 1994) 1221 subjects aged 75-80 years
 - **Weight loss**
 - > 3 kg: 47 % (men) - 43 % (women)
 - > 5 kg: 16 % (men) - 16 % (women)
 - **BMI ≤ 20**: 3 % (men) - 6 % (women)
 - **Albumin < 35 g/L**: 2.2 % of subjects
 » Euronut-Seneca Eur J Clin Nutr 1996
Module 36.1

Prevalence of malnutrition in nursing homes

<table>
<thead>
<tr>
<th>Reference</th>
<th>N</th>
<th>Tool</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sayoun 1988</td>
<td>260</td>
<td>A, Bio, Fl</td>
<td>19 %</td>
</tr>
<tr>
<td>Larsson 1990</td>
<td>435</td>
<td></td>
<td>29 %</td>
</tr>
<tr>
<td>Compan 1999</td>
<td></td>
<td></td>
<td>25 %</td>
</tr>
<tr>
<td>Saletti 2000</td>
<td></td>
<td></td>
<td>30 %</td>
</tr>
<tr>
<td>Crogan 2003</td>
<td>311</td>
<td>BMI</td>
<td>39 %</td>
</tr>
<tr>
<td>Margretts 2003</td>
<td>1368</td>
<td>A</td>
<td>21 %</td>
</tr>
<tr>
<td>Suominen 2005</td>
<td>2114</td>
<td>MNA</td>
<td>29 %</td>
</tr>
</tbody>
</table>

20-40 %
The Helsinki Nutrition Study of Older People

MNA registration of ~80% of institutionalized old people in Helsinki

<10% are well nourished

Soini et al. JNHA 2006;10:495-99
Module 36.1
Prevalence of malnutrition in the hospital

<table>
<thead>
<tr>
<th>Reference</th>
<th>N</th>
<th>Tool</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constans 1992</td>
<td>324</td>
<td>A, Bio</td>
<td>30 (M) - 40 (F) %</td>
</tr>
<tr>
<td>Mowé 1994</td>
<td>311</td>
<td>A, Bio, F</td>
<td>10 %</td>
</tr>
<tr>
<td>Gazotti 2000</td>
<td></td>
<td></td>
<td>21 %</td>
</tr>
<tr>
<td>Thomas 2002</td>
<td></td>
<td></td>
<td>18-53-29 %</td>
</tr>
<tr>
<td>Pablo 2003</td>
<td>60</td>
<td>SGA, NRI, A, Bio</td>
<td>63-90-58 %</td>
</tr>
<tr>
<td>Paillaud 2004</td>
<td>97</td>
<td>A</td>
<td>32 %</td>
</tr>
<tr>
<td>Stratton 2006</td>
<td>60</td>
<td>MUST</td>
<td>58 %</td>
</tr>
</tbody>
</table>

Prevalence of undernutrition according to MNA classification in an international perspective

24 datasets pooled, 12 countries, 4507 subjects, mean age 83 y

Undernutrition in Swedish old adults

Extract from ~30 prevalence studies
Malnutrition in UK costs in excess of £7.3 billion per year

UK costs for obesity = £3.5 billion per year

Long-term care
£2.6 billion

Community

Other

Hospital

£3.8 billion

Elia M BAPEN report 2005
BMI and mortality in a prospective cohort of US adults

- 1 million Americans
- >55 y
- 15 y follow-up
- ~250,000 died

Calle et al NEJM 1999
Body mass index - function and survival in old age

- ~13,000 >65 y
- 7 y follow-up
- Optimal function at BMI ~25
- Best survival at BMI ~25-30

Poor eating in hospital ⇒ higher risk
3200 patients age 78–103 y (4th age quartile)

Energy intake by Swedish hospital patients

• >1000 patients at Uppsala University Hospital, ~65 y
• 24 h food registration
• Energy need: 30 kcal/kg/d (>70: 25 kcal/kg/d)
• Median intake 50-75 % of needs
• ½ received <75% of energy needs
• 20% received <50% of energy needs

Wegener S. Pers comm.
Weight as predictor of COPD mortality

400 COPD-patients, >65 y
4 y f-up

- BMI
- Age
- PaO2
- PaCO2, FEV1, sex

Cardiac cachexia - mortality

- Definition: >6% weight loss last 6 mo
- Prevalence: 12-15% (NYHA II-IV)
- Incidence: 10%/y

1929 CHF pat (60 y), NYHA II 60%, RCT (ACEi vs. C), 35 mo, 39% died

Hazard ratio (95% CI) for †
- Weight loss >6%: 2.1 (1.7-2.5)
- NYHA III: 1.9 (1.4-2.5)
- LVEF <25%: 1.5 (1.3-1.7)

Anker et al. Lancet 2003;361:1077-83
“Geriatric cachexia” - 1-year survival decreases with lower weight (BMI)

- 400 patients (81 y)
- Independent predictors of mortality within 1 y
 - Body mass index
 - Gender
 - Function (ADL)
 - Age, Diagnosis

Major negative effects of undernutrition

- Immunodeficiency – infections
- Muscle wasting – sarcopenia
- Depressed mood - QoL↓
Nutritional immune deficiency
MAIDS - malnutrition associated immune deficiency syndrome

Cell-mediated immunity ↓
- T-lymphocytopenia
- CD4/CD8 ratio ↓

Humoral immunity ↓
- Vaccination ↓

Granulocyte dysfunction
- Chemotaxis ↓
- Oxygen radical production ↓

Infections
Granulocyte dysfunction in starvation

Reduced bactericidal effect in PMN from malnourished

Reduced superoxide generation in PMN from malnourished

Mental effects of starvation

- Depression
- Apathy
- Irritability
- Social withdrawal

34 young men, 1500 kcal/day 6 mon, lost 25% of body weight

Keys A. The Biology of Human Starvation 1950
Macro/micro nutrient deficiencies probably related to brain function

- Tryptophane \rightarrow serotonin \leftarrow
- omega-3 fatty acids \leftarrow
 - Membrane functions, gene regulation, eicosanoid production
- Vit B12/folate \rightarrow homocystein \leftarrow
- Thiamin (B1) \leftarrow
- Iron \leftarrow
The Japanese Centenarian Study

- 1907 100-year-olds, 10% were independent, i.e. preserved ADL, intact cognition & high social status

Variables Linked to Successful Aging

- Good vision
- **Protein intake↑**
- No falls
- Regular training
- No alcohol
- Good chewing ability
- Regular sleep
- Male

Ozaki JAGS 2007
Gait Speed and Survival in Older Adults

- Pooled analyses of 9 cohorts; 34500 community-dwelling old adults, 74 y, 60% w
- Follow-up 6-21 years, 17500 deaths
- HR for death was 0.88 (95%CI 0.87-0.90) per 0.1 m/s faster gait

Figure 2. Predicted Median Life Expectancy by Age and Gait Speed

Studenski et al. JAMA 2011;305:50-58
Module 36.1
Micronutrient deficiency

• Community: Euronut-SENECA study
 – Blood status
 • Low vitamin B12: 2.7 - 7.3 %
 • Low folic acid: 0 - 0.3 %
 • Low vitamin B6: 5.7 - 23 %
 • Low vitamin E: 0.6 - 1.1 %
 • Low vitamin D: 36 - 47 %
 – Dietary intake
 • 24% of men and 47% of women had low dietary intakes of at least one of the following micronutrients:
 – calcium, iron, retinol, ß-carotene, thiamine, pyridoxine or vitamin C
Vitamin D Receptors

Montero-Odasso et al, Mol Aspects Med 2005;26
Vitamin D and Sarcopenia

Prevalence of grip strength loss (defined as loss >40%, study sample n = 1,008) and appendicular muscle mass loss (defined as loss >3%, study sample n = 331) during 3-yr follow-up according to categories of baseline serum 25-OHD concentration. P value of χ^2 test.

Module 36.1
Fracture consequences of malnutrition

- 6754 women, ~6 years follow-up
- **weight loss** increased the risk of fracture of the proximal femur, pelvis and proximal humerus
- age adjusted RR per 10% decrease in weight \(RR = 1.68 \) [95 % CI 1.17 – 2.41]

- Adjustment for age, cigarette smoking, physical activity, estrogen use, medical conditions, health status, body weight, femoral neck bone mass, and rate of change in calcaneal bone mass

Module 36.1

Pressure sore consequences of malnutrition

<table>
<thead>
<tr>
<th>Risk factors for pressure sores</th>
<th>Low albumin</th>
<th>Low food intake</th>
<th>Weight BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlowitz 1989</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ek 1991</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bergström 1992</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Inman 1993</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eachempati 2001</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Reed 2003</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horn 2004</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Module 36.1

Malnutrition in the elderly: Epidemiology and Consequences

- KEY MESSAGES - 1
 The prevalence of protein – energy malnutrition is
 - relatively low in community-dwelling elderly (~1 to 5%)
 - more common in nursing homes (~ up to 35%)
 - frequent in hospitalised elderly patients (~ up to 50%)
Module 36.1
Malnutrition in the elderly: Epidemiology and Consequences

• KEY MESSAGES - 2
• Protein energy malnutrition is associated with an increased cost and risk of
 – death
 – nosocomial infections
 – sarcopenia
 – hip fractures
 – pressure ulcer development
Module 36.1

Malnutrition in the elderly: Epidemiology and Consequences

• KEY MESSAGES-3
 Elderly subjects are at risk of micronutrient deficiency, e.g.
 – low calcium intake and low vitamin D status that increase the risk of osteoporosis
Prevalence of PEM during the stroke trajectory

- Axelson et al. 1988
- Unosson et al. 1994
- Davalos et al. 1996
- Finestone et al. 1995
- Kumlien & Axelson 2002
- Westergren et al. 2001
Module 36.1

Infectious consequences

<table>
<thead>
<tr>
<th>Reference</th>
<th>Risk factors for nosocomial infections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harkness 1990</td>
<td>Dependent feeding, weight loss</td>
</tr>
<tr>
<td>McClave 1992</td>
<td>hypoalbuminemia</td>
</tr>
<tr>
<td>Potter 1995</td>
<td>BMI, CAMA</td>
</tr>
<tr>
<td>Rothan-Tondeur 2003</td>
<td>BMI, hypoalbuminemia</td>
</tr>
<tr>
<td>Paillaud 2005</td>
<td>Hypoalbuminemia, low energy intake</td>
</tr>
</tbody>
</table>

BMI: body mass index, *CAMA*: corrected arm muscle area
Health ABC Study

Adjusted lean mass (LM) loss (3 years)
by quintile of energy-adjusted total protein intake (n=2066)

Houston DK et al, Am J Clin Nutr 2008; 87: 150-155
Vitamin D deficiency and physical performance

Bischoff-Ferrari HA et al., Am J Clin Nutr 2004;80:752-8
Depression and cognitive decline in rural old people in Bangladesh

- 457 >60 y (69±7), 75% w
- 26/62% PEM/at risk by MNA
- Low MNA score predicted
 - Depression (self-reported)
 - general cognitive decline
 - Bangla-Adapted MMSE
 - Reduced handling of “speed of information”

Ferdous et al. Publ Health Nutr 2009
Ferdous et al. J Am Ger Soc 2010