S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) e.V.

in Zusammenarbeit mit dem Arbeitskreis Klinische Ernährung (AKE), der Gesellschaft für Klinische Ernährung der Schweiz (GESKES) und den Fachgesellschaften Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI) e.V., Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV) e.V., Deutsche Gesellschaft für Chirurgie (DGCH) e.V.

Klinische Ernährung in der Chirurgie

Arved Weimann¹, Stefan Breitenstein², Sabine Gabor³, Stefan Holland-Cunz⁴, Matthias Kemen⁵, Friedrich Längle⁶, Marc Martignoni⁷, Nada Rayes⁸, Bernd Reith⁹, Anna Schweinlin¹⁰, Wolfgang Schwenk¹¹, Daniel Seehofer⁸, Metin Senkal¹², Christian Stoppe^{13,14}

- ¹ Klinik für Allgemein-, Viszeral- und Onkologische Chirurgie, Klinikum St. Georg gGmbH, Leipzig, Deutschland
- ² Klinik für Viszeral- und Thoraxchirurgie, Klinischer Bereich B, Kantonsspital Winterthur, Winterthur, Schweiz
- ³ Abteilung für Chirurgie, KRAGES Burgenländische Krankenanstalten Gesellschaft m. b. H., Oberwart, Österreich
- ⁴ Klinik für Kinderchirurgie des Universitätskinderspitals beider Basel, Basel, Schweiz
- ⁵ Abteilung für Allgemein- und Viszeralchiurgie, Lehrkrankenkaus der RUB Bochum, Evangelisches Krankenhaus, Herne, Deutschland
- ⁶ Chirurgische Abteilung, Landesklinikum Wr. Neustadt, Wiener Neustadt, Österreich
- ⁷ Klinik und Poliklinik für Chirurgie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
- ⁸ Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
- ⁹ Klinik für Allgemein-, Viszeralchirurgie und Proktologie, Agaplesion Diakonie Kliniken Kassel, Kassel, Deutschland
- ¹⁰ Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland

¹¹ Gesellschaft für Optimiertes PeriOperatives Management mbH – GOPOM GmbH,

Düsseldorf, Deutschland

¹² Klinik für Allgemein- und Viszeralchirurgie, Plastische und Rekonstruktive Chirurgie,

Marien Hospital Witten, Lehrkrankenhaus der Ruhr-Universität Bochum, Witten,

Deutschland

¹³ Klinik und Poliklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und

Schmerztherapie, Universitätsklinikum Würzburg, Würzburg, Deutschland

¹⁴ Klinik für Kardioanästhesiologie und Intensivmedizin, Deutsches Herzzentrum

Berlin, Charité Berlin, Berlin, Deutschland

Korrespondenzadresse

Prof. Dr. med. Arved Weimann

Klinikum St. Georg GmbH

Abteilung für Allgemein-, Viszeral- und Onkologische Chirurgie mit Klinischer

Ernährung

Delitzscher Str. 141

04129 Leipzig

E-Mail: Arved.Weimann@sanktgeorg.de

Zusammenfassung

Die Vermeidung einer ausgeprägten Katabolie nach chirurgischen Eingriffen mit

frühem postoperativen Kostaufbau und Mobilisierung zur raschen Rekonvaleszenz ist

heute der Standard des perioperativen Management im so genannten Enhanced

Recovery After Surgery (ERAS) Konzept. So ist die frühe orale Nahrungszufuhr auch

die bevorzugte Form der postoperativen Ernährung. Gemessen am Kalorienbedarf ist

jedoch gerade nach Eingriffen am oberen Gastrointestinaltrakt für längere Zeit von

einer verminderten Nahrungsaufnahme auszugehen. Dies birgt grundsätzlich das

Risiko eines fortschreitenden Gewichtsverlusts und einer Unterernährung der

Patienten während des postoperativen Verlaufs der Patienten nach großen

2

chirurgischen Eingriffen. Mangel- und Unterernährung stellen signifikante Risikofaktoren für postoperative Komplikationen dar. So ist die frühe enterale Ernährung besonders für chirurgische Patienten mit einem bereits bestehenden Ernährungsrisiko wichtig. Der Fokus dieser Leitlinie liegt besonders auf den ernährungstherapeutischen Aspekten des ERAS Konzeptes (Plan A). Dies betrifft präoperativ Strategien zur Konditionierung ("Prähabilitation"). Postoperativ können trotz bestmöglicher Versorgung schwere Komplikationen mit der Notwendigkeit zur Reoperation und Intensivtherapie eintreten, die eine besondere, auch medizinische (künstliche) Ernährungstherapie erforderlich machen (Plan B)

Aus der Stoffwechsel- und Ernährungsperspektive sind folgende Aspekte in der perioperativen Versorgung zentral:

- Integration der Ernährung in das gesamte perioperative Management des Patienten
- Vermeidung von längeren perioperativen Nüchternheitsperioden
- Möglichst frühe Wiederaufnahme der oralen Ernährung nach chirurgischen Eingriffen
- früher Start einer Ernährungstherapie bei Patienten mit metabolischem Risiko
- metabolische Kontrolle z. B. der Glukose im Blut
- Reduzierung von Faktoren, die Stress und Katabolie induzieren oder die gastrointestinale Funktion beeinträchtigen
- Zurückhaltende Gabe von Medikamenten mit ungünstigem Einfluss auf die Darmperistaltik
- frühe Mobilisation zur Stimulierung der Proteinsynthese und der Muskelfunktion
- diese Leitlinie präsentiert insgesamt Empfehlungen für die tägliche klinische Praxis

Abstract

The avoidance of pronounced catabolism after surgical interventions with early postoperative diet build-up and mobilization for rapid convalescence is today the standard of perioperative management in the so-called Enhanced Recovery After Surgery (ERAS). Thus, early oral nutrition is also the preferred form of postoperative nutrition. However, measured in terms of caloric requirements, reduced food intake can be assumed for a longer period of time, especially after surgery on the upper gastrointestinal tract. This fundamentally carries the risk of progressive weight loss and

patient malnutrition during the postoperative course of patients undergoing major surgery. Malnutrition and undernutrition are significant risk factors for postoperative complications. Thus, early enteral nutrition is particularly important for surgical patients at pre-existing nutritional risk. The focus of this guideline is particularly on the nutritional aspects of the ERAS concept (Plan A). This relates preoperatively to strategies for conditioning ("prehabilitation"). Postoperatively, despite the best possible care, severe complications may occur with the need for reoperation and intensive therapy, requiring special nutritional therapy, including medical (artificial) nutrition (Plan B).

From a metabolic and nutritional perspective, the following aspects are central to perioperative care:

- Integration of nutrition into the overall perioperative management of the patient.
- Avoidance of prolonged perioperative fasting periods
- Resumption of oral nutrition as early as possible after surgical interventions
- Early start of nutrition therapy in patients at metabolic risk
- Metabolic control, e.g., of blood glucose
- Reduction of factors that induce stress and catabolism or impair gastrointestinal function
- Restrained administration of drugs with unfavorable influence on intestinal peristalsis
- Early mobilization to stimulate protein synthesis and muscle function
- This guideline presents overall recommendations for daily clinical practice

Schlüsselwörter

Perioperative Ernährung, enterale Ernährung, ,parenterale Ernährung, Immunonutrition, ERAS, Carbohydrate Loading, Prähabilitation

Keywords

Perioperative nutrition, enteral nutrition, parenteral nutrition, immunonutrition, ERAS, carbohydrate loading, prehabilitation

Abkürzungen

ADH, adiuretisches Hormon; AKE, Arbeitskreis Klinische Ernährung; ASPEN, American Society for Parenteral and Enteral Nutrition; AWMF, Arbeitsgemeinschaft Wissenschaftlich Medizinischer Fachgesellschaften; BCAA, verzweigtkettigen Aminosäuren; BIA, Bioelektrische Impedanzanalyse; BMI, Body-Mass-Index; CRP, Creaktives Protein: DGAI. Deutsche Gesellschaft für Anästhesiologie Intensivmedizin; DGAV, Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie; DGCH, Deutsche Gesellschaft für Chirurgie; DGEM, Deutsche Gesellschaft für Ernährungsmedizin; ECMO, extrakorporale Membranoxigenation; EE, enterale Ernährung; ERAS, Enhanced Recovery After Surgery; ESICM, European Society of Intensive Medicine; ESPEN, European Society for Clinical Nutrition and Metabolism; ESPGHAN, European Society for Pediatric Gastroenterology Hepatology and Nutrition; FKJ, Feinnadelkatheterjejunostomie; GESKES, Gesellschaft für Klinische Ernährung der Schweiz; GLIM, Global Leadership Initiative on Malnutrition; HOMA, Homeostatis Model Assessment; HOMA-IR, Homeostatis Model Assessment of Insulin Resistance; IFALD, mit Kurzdarm assoziierte Lebererkrankungen; IGF-1, Insulin-like growth factor 1; LCT, langkettige Triglyceride; MCT, mittelkettige Triglyceride; NRS, Nutritional Risk Screening; ONS, orale Nahrungssupplemente, (bilanzierte) Trinknahrung; PE, parenterale Ernährung; PEG, perkutane endoskopische Gastrostomie; PG-SGA, Patient Generated Subjective Global Assessment; PONV, PostOperative Nausea and Vomiting; POPF, postoperativen pankreatischen Fistel; PYMS, Pediatric Yorkhill Malnutrition Score; QUICKI, Quantitative Insulin Sensitivity Check Index; RCT, randomisierte kontrollierte Studie; SGA, Subjective Global Assessment; SIGN, Scottish Intercollegiate Guidelines Network; SIRS, Systemic Response SMI, Inflammatory Syndrome; Skelettmuskelindex; SOP, Standardarbeitsanweisung; STAMP, Screening Tool for the Assessment for Malnutrition in Pediatrics; STRONGkids, Screening Tool for Risk of Impaired Nutritional Status and Growth; WHO, World Health Organisation

1 Einleitung

1.1 Vorbemerkungen - Prinzipien der metabolischen und ernährungstherapeutischen Behandlung

Für die optimale Planung einer Ernährungstherapie bei chirurgischen Patienten ist ein Verständnis für die grundlegenden Veränderungen des Stoffwechsels als Reaktion auf Stress und Trauma unabdingbar. Dabei stellt ein verminderter Ernährungsstatus einen substantiellen Risikofaktor für postoperative Komplikationen dar. Hungern bei metabolischem Stress durch jedwede Art von Verletzung unterscheidet sich maßgeblich vom Fasten unter physiologischen Bedingungen [1]. Chirurgische Eingriffe führen zur Inflammation, die mit der Größe des Eingriffes korreliert und verursachen eine metabolische Stressantwort, aus der sich in der Folge auch postoperative Komplikationen wie Infektionen oder Organdysfunktion entwickeln können. Um eine adäquate Heilung und funktionelle Erholung ("restitutio ad integrum") zu ermöglichen, benötigt es diese metabolische Stressantwort, jedoch wird dadurch gleichzeitig eine Ernährungstherapie notwendig, insbesondere wenn der Patient mangelernährt ist oder eine verlängerte Stress-/Entzündungsantwort zu erwarten ist. Der negative Effekt einer langen Periode des kalorischen- und Eiweißdefizites auf den Outcome von kritisch kranken chirurgischen Patienten wurde erst kürzlich zum wiederholten Male nachgewiesen [2]. Der Erfolg einer Operation beruht demnach nicht alleine auf den technischen Fähigkeiten des Operateurs, sondern auch auf der optimalen perioperativen Therapie und Versorgung des Patienten, welche die Möglichkeit des Patienten optimiert auf metabolischen Stress zu reagieren und die zur Verfügungsstellung einer optimalen Ernährungstherapie mit einschließt. Insbesondere bei Patienten mit malignen Erkrankungen kann das perioperative Management eine zentrale Bedeutung für den langfristigen Outcome der Patienten haben [3, 4].

Chirurgie, wie jede andere Verletzung, induziert durch das chirurgische Trauma oder Ischämie/Reperfusion eine Serie von Reaktionen, die die Freisetzung von Stresshormonen und inflammatorischen Mediatoren wie z. B. Zytokinen beinhalten. Diese Zytokinantwort auf eine Operation, Verletzung oder Infektion - das Systemic Inflammatory Response Syndrome (SIRS) - hat wiederum Einfluss auf den Stoffwechsel. SIRS fördert den Katabolismus von Glykogen, Fett und Protein sowie die Freisetzung von Glukose, freien Fett- und Aminosäuren in die Blutbahn. Dadurch werden diese Substrate von ihrer eigentlichen Funktion - der Erhaltung der peripheren

Proteinmasse (v. a. der Muskelmasse) - abgezogen und für die Aufgabe der Heilung und Immunantwort zur Verfügung gestellt [5, 6]. Dies führt zwangsweise zum Verlust von Muskelmasse, welcher wiederum die kurz- und auch die langfristige funktionelle Erholung erschwert, die das eigentlich primäre Ziel nach chirurgischen Eingriffen sein sollte [7]. Um Proteinressourcen zu erhalten, sind Lipolyse, Lipidoxidation und verringerte Glukoseoxidation wichtige Überlebensmechanismen [8]. Die Ernährungstherapie kann zwar die Energie für eine optimale Heilung zur Verfügung stellen, aber in der Stressantwort der frühen postoperativen Phase kann sie allenfalls gering bis gar nicht dem Muskelkatabolismus entgegenwirken.

Um die periphere Protein- bzw. Körperzellmasse zu erhalten oder sogar wiederherzustellen, muss der Körper eine adäquate Reaktion auf das chirurgische Trauma und eine mögliche Infektion finden. Substratangebot und -aufnahme genauso wie körperliche Aktivität sind hierbei Grundvoraussetzungen. Patienten können im Rahmen der Grundkrankheit oder Komorbidität schon präoperativ unter einer chronischen geringgradigen Inflammation wie bei Karzinomen, Diabetes, Nieren- oder Lebererkrankungen [9]. Ebenfalls müssen leiden auch andere nicht ernährungsbedingte metabolische Faktoren mit Einfluss auf die Immunfunktion in Betracht gezogen und - wenn möglich - korrigiert bzw. verbessert werden. Diese sind verringerte kardio-respiratorische Funktion, Anämie, akute oder chronische Intoxikationen (wie z. B. Alkohol oder Medikamente) sowie eine Therapie mit antientzündlichen oder zytotoxischen Medikamenten.

Der Chirurg muss deshalb das Ausmaß des chirurgischen Eingriffes mit dem Ernährungsstatus, der inflammatorischen Aktivität und der zu erwartenden Entzündungsreaktion in Einklang bringen. Eine schwere vorbestehende Entzündung und/oder Sepsis beeinflusst die Heilung des Patienten negativ (hinsichtlich Wundheilung, Anastomosen, Immunfunktion etc.). Hier reduziert sich natürlich auch der positive Effekt einer Ernährungstherapie. Schwer mangelernährte Patienten können eine adyname Form der Sepsis mit Hypothermie, Leukopenie, Somnolenz, verzögerter Wundheilung und Abszessbildung aufweisen, welche unbehandelt zu einem langsamen körperlichen Verfall und erhöhter Letalität führen. In dieser Situation trägt Ernährungstherapie wahrscheinlich nicht zu einem Erhalt oder Aufbau von Muskelmasse bei, kann aber eine adäquate Stressantwort mit der Chance auf unkomplizierten Verlauf und Rekonvaleszenz sicherstellen.

Schwer beeinträchtigte Patienten mit Mangelernährung sollten perioperativ eine länger dauernde Ernährungstherapie erhalten. Kurzfristig sollte eine 7-10 Tage dauernde Ernährungsintervention in Betracht gezogen werden. Sofern vertretbar z. B im Rahmen eines neoadjuvanten Therapiekonzepts ist eine 4-6 wöchige Phase der Ernährungstherapie anzustreben, die zusätzlich auch mit körperlicher Aktivität als "Prähabilitation" kombiniert werden sollte [10].

Bei nachgewiesener Sepsis hat die sofortige Kontrolle des Infektionsherdes ("Source control") Vorrang. Auf ausgedehnte chirurgische Maßnahmen sollte möglichst verzichtet werden (z. B. nur interventionelle Drainage, Stomaanlage) Die definitive chirurgische Versorgung sollte zu einem späteren Zeitpunkt durchgeführt werden, wenn die Sepsis erfolgreich behandelt und kontrolliert ist.

Bei elektiven Eingriffen konnte gezeigt werden, dass Maßnahmen zur Reduktion des chirurgischen Stresses und der Katabolie das Erreichen einer anabolen Stoffwechselsituation unterstützen können. Dadurch wird es dem Patienten ermöglicht, sich substantiell besser und schneller auch von einem großen chirurgischen Eingriff zu erholen. Diese Programme für Fast-Track-Surgery [11] wurden dann zum "Enhanced Recovery After Surgery" (ERAS) Konzept weiterentwickelt [5, 12-14].

ERAS zielt auf eine rasche Erholung und Verkürzung des Krankenhausaufenthalts und ist zum perioperativen Standard von Kolonoperationen geworden [12, 15-17] (la). Das Konzept beschreibt eine Vielzahl von Komponenten, die darauf abzielen, den Stress zu minimieren und die Rückkehr zur normalen Funktion zu ermöglichen: diese präoperative Vorbereitung beinhalten und Medikation des Patienten. Flüssigkeitsbalance, Anästhesie und postoperative Analgesie und zu einem erheblichen Ausmaß auch die prä- und postoperative Ernährung sowie Mobilisation [5, 12-14]. Aus diesem Grund haben sich die verschiedenen ERAS-Programme in vielen Ländern und über zahlreiche chirurgische Disziplinen als Gold-Standard im perioperativen Management der Patienten etabliert. Angefangen bei Koloneingriffen [12, 15, 17-19] wurden ERAS Programme für alle großen Operationen entwickelt und eingeführt. Sie sind ebenfalls erfolgreich in der Förderung der raschen "funktionellen" Erholung nach Ösophagusresektion [20, 21], Gastrektomie [21-23], Pankreasresektion [24-26], großen Beckeneingriffen [27, 28], Hysterektomie [29] und in der onkologischen Gynäkologie [30]. In Zeiten der limitierten Ressourcen im Gesundheitswesen ist ERAS durch Kürzung der Krankenhausverweildauer auch ökonomisch sinnvoll [31]. ERAS Protokolle können sicher und vorteilhaft auch bei älteren Patienten angewendet werden [32]. Außerdem kann die strenge Einhaltung von ERAS Protokollen bei großen kolorektalen Eingriffen auch beispielsweise zu einer verbesserten 5-Jahres Überlebensrate dieser Patienten führen [4].

Eine zentrale Komponente von ERAS ist das Ernährungsmanagement des Patienten, welches als interdisziplinäre Aufgabe angesehen werden muss. ERAS Programme beinhalten auch eine metabolische Strategie zur Reduktion des chirurgischen Stresses und damit zur Verbesserung des Behandlungsergebnis [13]. Die ERAS Protokolle unterstützen eine frühe orale Nahrungsaufnahme um die normale Darmfunktion rasch wieder herzustellen Ein Verzicht auf jede weitere supplementierende Zufuhr kann bei Risikopatienten Ernährungsdefizit und sogar Unterernährung nach sich ziehen. Aus diesem Grund raten die ERAS Leitlinien zur Motivation der Patienten mit großzügiger Verordnung von oralen Nahrungssupplementen (ONS) während der prä- und postoperativen Phase:

- Einbeziehung der Ernährung in das therapeutische Gesamtkonzept
- Screening und Erfassung des metabolischen Risikos bei der Aufnahme
- Vermeidung längerer Nüchternheitsperioden, insbesondere präoperativ
- Frühestmögliche Wiederaufnahme der Nahrungszufuhr postoperativ
- Verminderung von katabolen Stressfaktoren und solchen mit Beeinträchtigung der Funktion des Gastrointestinaltrakts
- Blutzuckermonitoring
- Frühe Mobilisierung zur Stimulation von Proteinsynthese und Muskelfunktion.

Ernährung ist als Modul des ERAS-Programms eine interprofessionelle Aufgabe. Für den Chirurgen muss die mechanistische Herangehensweise an den Patienten um die metabolische Dimension einer Operation erweitert werden. So ist das ERAS-Programm auch ein metabolisches Konzept. Ein früher oraler Kostaufbau wird angestrebt. Eine längerfristig verminderte orale Kalorienzufuhr kann gerade nach großen Eingriffen das Risiko für Komplikationen im weiteren postoperativen Verlauf erhöhen. Dies gilt ganz besonders bei bereits präoperativ bestehendem ernährungsmedizinischem Defizit und großen Eingriffen im oberen Gastrointestinaltrakt. Bei diesen Risikopatienten ist ein flexibles Vorgehen erforderlich, sodass auch die Indikation zur supplementierenden enteralen/parenteralen Ernährung geprüft werden muss [33]. Deswegen wird auch für ERAS empfohlen, bei den Patienten schon

bei der chirurgischen Aufnahme ein ernährungsmedizinisches Risikoscreening durchzuführen [15].

1.2 Krankheitsspezifische Mangelernährung in der Chirurgie (siehe auch [34])

Mangelernährung wird allgemein im Zusammenhang mit Fasten und Hunger bei Fehlen von Nahrung assoziiert. Das Vorkommen in der westlichen Welt wird insbesondere aufgrund der Zunahme an Übergewicht und Adipositas in der weder realisiert Krankheitsspezifische Bevölkerung noch verstanden. Mangelernährung ist subtiler, als es durch die World Health Organisation (WHO)-Definition der Unterernährung mit einem Body-Mass-Index (BMI) <18,5 kg/m² abgebildet wird. Ein krankheitsassoziierter Gewichtsverlust führt in der Definition der WHO gerade bei Patienten mit Übergewicht nicht notwendiger Weise zu einem niedrigen BMI. Der Gewichtsverlust für sich bedeutet eine Veränderung der Körperzusammensetzung, die ein "metabolisches Risiko" nach sich zieht, welches bei Patienten vor großen, insbesondere Tumoroperationen, berücksichtigt werden muss. Da die krankheitsspezifische Mangelernährung häufig nicht erkannt wird und deswegen unbehandelt bleibt, werden metabolische Faktoren häufig auch nicht bei der kritischen Analyse der postoperativen Morbidität und des Outcomes berücksichtigt. Sehr viele retrospektive [35-43] und prospektive [44-63] große Studien haben den Zusammenhang zwischen einer Einschränkung des Ernährungsstatus und der postoperativen Komplikationsrate und der Letalität herausgearbeitet. Das Vorliegen einer krankheitsspezifischen Mangelernährung ist häufig Ausdruck der Grunderkrankung, wie z. B. bei einem Tumor oder einer chronischen Organinsuffizienz [64-72]. Eine systematische Übersicht von 10 Studien zeigte, dass die Anwendung eines validierten Instrumentes zur Messung des Ernährungsstatus bei chirurgischen Tumoroperationen als Prädiktor Patienten mit gastrointestinalen Krankenhausverweildauer dient [73]. Eine krankheitsspezifische Mangelernährung ist auch relevant für Patienten nach Organtransplantation [74-83].

Das metabolische Risiko als signifikanter Faktor der Krankenhausletalität ist bei älteren Menschen mit den Daten des europäischen "NutritionDay" an über 15.000 Patienten gezeigt worden [84]. Auch die aktuelle ERAS Leitlinie empfiehlt die vorherige

Erfassung des Ernährungsstatus und bereits bei Risikopatienten die Durchführung einer Ernährungstherapie möglichst oral über 7-10 Tage.

Nach den prospektiven Daten einer großen multizentrischen europaweit durchgeführten Untersuchung finden sich die meisten Risikopatienten im Krankenhaus in der Chirurgie, Onkologie, Geriatrie und Intensivmedizin. Die univariate Analyse dieser Studie zeigte als signifikante Faktoren für das Risiko von Komplikationen im Krankenhaus: die Schwere der Erkrankung, das Alter >70 Jahre, die Durchführung einer Operation und das Vorliegen einer Tumorerkrankung [85]. Im Hinblick auf die demographische Entwicklung in der westlichen Welt müssen Chirurgen von einer Risikoakkumulation bei alten Menschen vor großen Tumoroperationen ausgehen [86].

Das krankheitsassoziierte metabolische Risiko kann sehr leicht mit dem "Nutritional Risk Screening" (NRS 2002) [87] erfasst werden. Dieses Screening-Instrument ist auch für chirurgische Patienten validiert worden [85, 88] (IIa).

- BMI < 20.5 kg/m^2
- Gewichtsverlust > 5 % innerhalb von 3 Monaten
- Verminderte Nahrungsaufnahme
- Schwere der Erkrankung (2 Punkte für Tumorerkrankungen mit nachfolgender Operation)

Einen Zusatzpunkt erhalten Patienten über 70 Jahren. Der Score definiert ein metabolisches Risiko ab 3 Punkten. Dies besteht somit bereits bei einem 71-jährigen Patienten ohne Ernährungsdefizit vor einer Hemikolektomie wegen eines Karzinoms. Klassisch ist das "Subjective Global Assessment" (SGA), das jedoch einen erfahrenen Untersucher erfordert [89].

Für den chirurgischen Patienten wird unter Einbeziehung beider Scores in den Leitlinien der GLIM (ESPEN) ein hohes metabolisches Risiko definiert:

Definition eines hohen metabolischen Risikos [90]

- BMI < 18.5 kg/m²
- Gewichtsverlust > 10 15 % innerhalb von 6 Monaten
- Serumalbumin < 30 g/l (Ausschluss Leber und/oder Nierenerkrankung)
- SGA Grad C, NRS >5

In einer großen Kohortenstudie hat sich bei abdominalchirurgischen Patienten eine verminderte Nahrungsaufnahme in der Woche vor der Krankenhausaufnahme als ein noch besserer Risikoprädiktor gezeigt [91] (IIa). Für ältere chirurgische Patienten (>65

Jahre) konnten in einer systematischen Übersicht von 15 Studien aus den Jahren 1998 bis 2008 nur der Gewichtsverlust und das Serumalbumin als prädiktive Parameter des postoperativen Ergebnisses gefunden werden [92].

Der präoperative Serumalbuminspiegel ist ein signifikanter Prognosefaktor für das Entstehen postoperativer Komplikationen [93, 94], wobei auch eine Assoziation mit einem schlechten Ernährungsstatus besteht. In einer Metaanalyse von 19 Studien mit 34.363 geriatrischen Patienten mit Schenkelhalsfraktur war eine präoperative Hypalbuminämie signifikant mit einer erhöhten Letalität im Krankenhaus und Komplikationen nach der operativen Versorgung assoziiert [95].

Basierend auf diesen Erkenntnissen sollte der Serumalbuminspiegel bei chirurgischen Patienten zur Einschätzung des metabolischen Risikos mit einbezogen werden. Dies ist auch im Einklang mit dem aktuellen Joint Consensus Statement on Nutritional Screening and Therapy within a Surgical Enhanced Recovery Pathway der American Society for Enhanced Recovery and Perioperative Quality Initiative [96]. Gleichzeitig sollte die klinische Bedeutung des Albumin aufgrund seines trägen Reaktionsverhaltens (lange Halbwertszeit) und Beeinträchtigung im Falle von Leberdysfunktionen kritisch betrachtet werden.

Die Mangelernährung ist 2015 von der ESPEN definiert worden [97]:

- BMI < 18.5 kg/m^2
- kombinierter Gewichtsverlust > 10 % oder 5% innerhalb von 3 Monaten

und

- verminderter BMI <20 kg/m² oder <22 kg/m² bei Patienten >70 Jahren oder
 - niedriger Fettfreier Massenindex <15 kg/m² (Frauen) und <17 kg/m² (Männer)

Diese Definition ist aus 2 Gründen viel diskutiert worden. Die Kopplung eines Gewichtsverlusts an den BMI ist problematisch. Ein niedriger Fettfreier-Massenindex setzt eine quantitative Messung der fettfreien Masse z. B. durch Bioelektrische Impedanzanalyse (BIA) voraus, welche nicht überall zur Verfügung steht.

Neue GLIM Definition der Mangelernährung

Bereits 2019 ist von der Global Leadership Initiative on Malnutrition (GLIM) eine neue Definition der Mangelernährung erarbeitet worden, welche von allen großen Fachgesellschaften weltweit getragen wird [98].

Hierbei werden phänotypische und ätiologische Kriterien unterschieden:

Phänotypische Kriterien sind:

- Unfreiwilliger Gewichtsverlust
- Niedriger BMI
- Verminderte Muskelmasse

Ätiologische Kriterien sind:

- Verminderte Nahrungsaufnahme und -resorption
- Inflammation
- Krankheitsschwere

Jeweils ein phänotypisches und ein ätiologisches Kriterium müssen zum Vorliegen einer Mangelernährung erfüllt sein.

Nach dem Screening auf eine Mangelernährung werden phänotypische und ätiologische Kriterien erhoben, welche einen ungewollten Gewichtsverlust, einen niedrigen BMI, eine reduzierte Muskelmasse sowie das Vorliegen einer schweren Erkrankung beziehungsweise Entzündungskonstellation im Körper berücksichtigen. Ist jeweils ein phänotypisches und ein ätiologisches Kriterium erfüllt, kann man die Diagnose "Mangelernährung" stellen und den Schweregrad anhand verschiedener Methoden einteilen. Dabei bleibt es dem Untersucher überlassen, welche Methoden zur Erhebung der Muskelmasse herangezogen werden.

Die GLIM Definition der schweren Mangelernährung ist in Übereinstimmung mit den Empfehlungen der ESPEN Leitlinie zur Definition eines hohen metabolischen Risikos. In einer norwegischen Registerstudie haben sich Gewichtsverlust und niedriger BMI wieder als signifikante Risikofaktoren für postoperative Komplikationen und erhöhte Letalität gezeigt [63].

Diese Daten sprechen in der klinischen Praxis für

• Ein Screening auf Mangelernährung (z. B. NRS 2002) bei der stationären Aufnahme oder dem ersten Patientenkontakt

- Die Definition eines krankheitsassoziierten "schweren metabolischen Risikos" (s. o.)
- Beobachtung und Dokumentation der oralen Nahrungsaufnahme
- routinemäßige Verlaufskontrolle des Gewichts und des BMI

Die Indikationen für eine supplementierende medizinische Ernährung sind Prävention und Behandlung von Katabolie und Mangelernährung. Dies betrifft vor allem den perioperativen Erhalt des Ernährungsstatus. Die Erfolgskriterien "therapeutische" Indikation zur medizinischen Ernährung sind die sogenannten "Outcome"-Parameter Morbidität, Krankenhausverweildauer und Letalität. Auch das Kosten-Nutzen-Verhältnis muss berücksichtigt werden. Die Verbesserung des Ernährungsstatus Lebensqualität sind allem wichtige und der vor ernährungsmedizinische Ziele im postoperativen Verlauf [99-112].

Eine supplementierende medizinische Ernährung findet ihre Indikation auch bei Patienten ohne offensichtliche krankheitsspezifische Mangelernährung, wenn vorhersehbar ist, dass der Patient für eine längere postoperative Zeitdauer unfähig sein wird, zu essen oder eine adäquate orale Kalorienmenge zu sich zu nehmen. Auch in diesen Situationen wird ohne Verzögerung zum Beginn einer medizinischen Ernährung geraten. Insgesamt gilt, nicht erst bis zur Manifestation einer krankheitsspezifischen Mangelernährung zu warten, sondern bereits bei Bestehen eines metabolischen Risikos eine Ernährungstherapie frühzeitig zu beginnen.

ONS und enterale Ernährung (EE) (Sondenernährung) wie auch die parenterale Ernährung (PE) bieten die Möglichkeit im Falle einer unzureichenden oralen Nahrungsaufnahme, eine adäquate Kalorienzufuhr sicher zu stellen. Die vorliegende Leitlinie gibt evidenzbasierte Empfehlungen für den Einsatz der oralen/enteralen und/oder parenteralen Ernährung für chirurgische Patienten mit besonderem Fokus auf

- Risikopatienten
- großen Tumoroperationen
- schweren Komplikationen trotz bestmöglicher perioperativer Betreuung.

In vielen Aspekten ist die Evidenz für den Nutzen der perioperativen Ernährungstherapie noch unbefriedigend. Ein Problem ist vor allem die erhebliche Heterogenität der Studien.

Eine aktuelle Metaanalyse von 56 randomisierten kontrollierten Studien (RCT) mit 6.370 Patienten mit Operationen wegen eines gastrointestinalen Karzinoms hat bei ernährungsmedizinischer Supplementierung (Glukosedrink, Erhöhung der Proteinzufuhr, Immunonutrition) die Senkung der postoperativen Komplikationen (RR 0.74, 95%Cl 0.69 - 0.80); postoperativen Infektionen (RR 0.71, 95%Cl 0.64 - 0.79, n = 4.582, $I^2 = 4\%$) und nichtinfektiösen Komplikationen (RR 0.79, 95%Cl 0.71 - 0.87, n = 4.883, $I^2 = 16\%$) mit Verminderung der Krankenhausverweildauer (MD - 1.58 d; 95%Cl -1.83 - -1.32; $I^2 = 89\%$) gezeigt [113]. Eine weitere Metaanalyse von 10 Studien mit 1.838 Patienten mit Magenkarzinom hat Vorteile für die Gabe von Trinknahrungen und EE bezüglich Gewichtsverlustes und Präalbuminspiegel gezeigt [114].

Es besteht weiterhin ein Bedarf nach prospektiven, randomisierten Studien mit ausreichender Zahl homogener Patienten mit klar definierten Endpunkten. Die meisten vorliegenden Studien selektierten die Patienten beim Einschluss nicht nach dem metabolischen Risiko. Das typische Dilemma zeigt eine aktuelle systematische Übersicht zur Ernährung nach partieller Duodenopankreatektomie [115]. Zwar konnten 15 Studien mit 3.474 Patienten eingeschlossen werden. Dennoch konnte weder Evidenz für eine enterale noch für eine parenterale Supplementierung beim oralen Kostaufbau gezeigt werden. Die Qualität der Studien war für die Durchführung einer Metaanalyse nicht ausreichend, welches sich allerdings bei Ernährungsstudien sehr oft zeigt.

2 Grundlegende Fragen

2.1 Ist präoperative Nüchternheit notwendig?

Empfehlung 1	
Α	Patienten ohne besonderes Aspirationsrisiko soll vor einem
	chirurgischen Eingriff die Einnahme klarer Flüssigkeiten bis 2 h,
	die Einnahme von leicht verdaulichen, festen Speisen bis 6 h vor
	Beginn der Anästhesie erlaubt sein (BM, IE, QL).
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

In den letzten Jahrzehnten wurde immer mehr vom Dogma des präoperativen Fastens abgewichen, da sich keine Vorteile aus einer präoperativen Nüchternheit ergeben. Das Risiko von Aspirations- oder Regurgitation ist bei zweistündiger Nüchternheit für Flüssigkeiten gegenüber einer zwölfstündigen Nüchternheit nicht erhöht. Dies korreliert mit der physiologischen Zeit der Magenentleerung für Flüssigkeiten, welche 60-90 Minuten beträgt [99, 116, 117] (1++, 1+, 1+). Dementsprechend haben viele nationale Anästhesiegesellschaften ihre Leitlinien zum Fasten überarbeitet [93, 118, 119] und erlauben Patienten klare Flüssigkeiten bis 2 Stunden vor Anästhesiebeginn bei elektiven Eingriffen. Ausgenommen von dieser Empfehlung sind Patienten mit einem "besonderen Risiko", wie einer Notfalloperation und Patienten mit einer verzögerten Magenentleerung [99] oder mit gastroösophagealem Reflux [117] (1++). Seit der Implementierung der Leitlinien gab es keine Berichte über einen Anstieg der Aspirationen, Regurgitationen Rate von oder perioperativer pulmonaler Komplikationen. Die Minimierung von Nüchternphasen ist eine zentrale Komponente des ERAS Konzeptes. Die Möglichkeit, klare Flüssigkeiten sowie Kaffee oder Tee zu sich zu nehmen reduziert die Durstsymptomatik und damit auch daraus resultierende Kopfschmerzen.

2.2 Ist bei elektiven Eingriffen eine präoperative metabolische Vorbereitung mittels Kohlenhydratgabe sinnvoll?

Empfehlung 2	
B/0	Vor großen elektiven abdominellen Operationen sollten gezielt die Kohlenhydratspeicher aufgefüllt werden. (B) (QL). Die flüssige Kohlenhydratgabe kann nach Beginn am Vortag bis 2 Stunden vor Anästhesiebeginn gegeben werden (0) (QL).
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

Die präoperative Einnahme von kohlenhydrathaltigen Getränken (das sogenannte "Carbohydrate Loading") ist Teil des ERAS. Ziel ist es, mit 800 mL Trinkmenge über Nacht und 400 mL bis 2 Stunden vor Anästhesiebeginn den perioperativen Katabolismus zu reduzieren. Ähnlich wie bei anderen klaren Flüssigkeiten wird die Aspirationsgefahr nicht erhöht [99, 119-121] und die Magenentleerung wird nicht verlängert [122-125] (1++, 1+, 1+, 1+).

Bei der Bewertung der RCT sind mögliche Interessenskonflikte bei den Autoren durch ein Patent für den Kohlenhydrat-Drink zu berücksichtigen.

Zwei RCT haben den Effekt der präoperativen Gabe von Kohlenhydrat-Drinks auf das PONV-Syndrom (PostOperative Nausea and Vomiting) bei Patienten mit selektiver Cholezystektomie untersucht. Eine Studie zeigte eine Reduktion von PONV durch Kohlenhydrat-Drinks im Vergleich zu nüchternen Patienten, während die andere keinen Unterschied zwischen der Behandlungsgruppe und der Placebogruppe nachweisen konnte [94, 126] (beide 1+). Zwei weitere Studien bei Patienten mit Cholezystektomie konnten ebenfalls keinen zusätzlichen direkten Vorteil für Kohlenhydrat-Drinks in Bezug auf postoperativen Schmerz oder die Qualität der Erholung (gemessen mittels quality of recovery from anesthesia, QoR-40-Fragebogen) aufzeigen [127, 128] (beide 1+). Die orale Kohlenhydratgabe führt jedoch in mehreren Studien zu einer Verbesserung des postoperativen Wohlbefindens [129-134].

Der Einfluss von Carbohydrate Loading auf die, mit einer erhöhten Komplikationsrate assoziierte [135], postoperative Insulinresistenz ist ein zentraler Punkt der aktuellen Forschung. Eine postoperative Insulinresistenz bzw. postoperative Hyperglykämie

spiegelt eine katabole Stress-Reaktion auf das chirurgische Trauma wider [136], wobei Carbohydrate Loading darauf abzielt, dies zu reduzieren.

Bei kolorektalen Patienten bewirkte die Gabe von kohlenhydratreicher Lösung eine Reduktion der postoperativen Insulinresistenz [137, 138] (beide 1+). Dies wurde in 2 weiteren, aktuellen prospektiven RCT, bestätigt [139, 140] (1+), wobei erstere einen positiven Einfluss auf den postoperativen Gewichtsverlauf und letztere ebenso eine Senkung des Interleukin-6 Spiegel zeigen konnte.

Mittlerweile sind präoperative Drinks käuflich zu erwerben, die mit Glutamin, Antioxidantien und grünem Tee-Extrakt angereichert sind. Bei Patienten mit laparoskopischer Cholezystektomie zeigte eine Supplementation von Kohlenhydraten + Glutamin einen Vorteil bei der Entwicklung der postoperativen Insulinresistenz (gemessen mittels Homeostatis Model Assessment of Insulin Resistance, HOMA-IR), dem antioxidativen Status (Serum-Glutathion Konzentration) und der inflammatorischen Antwort (Serum Interleukin-6-Konzentration) [140, 141] (1+, 1-). Bei Pankreasresektionen erbrachte eine Präkonditionierung mit Glutamin, Antioxidantien und grünem Tee Extrakt eine signifikante Erhöhung der Plasma Vitamin-C Konzentration und eine Hebung der endogenen antioxidativen Kapazität im Vergleich zur Placebogruppe ohne jedoch den oxidativen Stress und die inflammatorische Antwort zu verbessern [142] (1-). Die Verwendung von selbst hergestellten Produkten wie gesüßtem Tee wurde bisher noch nicht in kontrollierten Studien untersucht. Es konnte jedoch gezeigt werden, dass ein Carbohydrate Loading auch durch handelsübliche fruchtbasierte Limonaden-Getränke erreicht werden kann [143] (2++).

Kritisch anzumerken ist hierbei, dass das Assessment der Insulinresistenz in vielen Studien auf dem Homeostasis Model Assessment (HOMA) und Quantitative Insulin Sensitivity Check Index (QUICKI) basiert ist. Dies sind etablierte Methoden um die Insulinresistenz einzuschätzen, da sie im Vergleich zum Goldstandart, der Hyperinsulinemic euglycemic clamp-Technik, bedeutend billiger sind und weniger Zeit in Anspruch nehmen. Beide Methoden beruhen auf Berechnungen anhand der gemessenen Nüchternglukose bzw. des Insulins, reflektieren also nicht die «wahre» Insulinresistenz [124, 144].

Es gilt aber auch die Studien zu erwähnen, die keine Reduktion der Insulinresistenz durch Carbohydrate Loading zeigten. So konnte eine prospektive RCT mit 142

Patienten, welche offene, kolorektale und leberchirurgische Eingriff einschloss, keine positiven Effekte von Carbohydrate Loading auf die HOMA-IR in der frühen postoperativen Phase nachweisen. Auch in Bezug auf die Inflammation, welche mittels C-reaktivem Protein (CRP) gemessen wurde, zeigten sich keine Unterschiede. Hingegen waren die Cortison-Plasmaspiegel am ersten postoperativen Tag niedriger, was auf eine Reduktion des postoperativen Stresses hinweisen könnte [145] (1+).

Ebenso konnten in der Herzchirurgie 3 Studien, welche den Einfluss eines präoperativer Kohlenhydrat-Drinks auf die postoperative Insulinsensitivität als primären Outcome-Parameter untersucht haben, keinen signifikanten Einfluss aufzeigen [124, 125, 133] (alle 1+).

Um eine mögliche kontraproduktive Wirkung der Kohlenhydrat-Gabe zu vermeiden, sollte dieses Konzept nicht bei Patienten mit schwerem Diabetes und insbesondere auch nicht bei einer vermuteten Gastroparese angewendet werden. Kohlenhydrat-Produkte sind höchstwahrscheinlich nicht förderlich bei Patienten mit Diabetes Typ I, da hier ein Insulindefizit und keine Insulinresistenz vorliegt und es somit zu einer deutlichen Hyperglykämie kommen kann.

Die vermutete Reduktion von postoperativen Infekten durch eine bessere postoperative Glukosekontrolle nach Carbohydrate Loading konnte bisher nicht bestätigt werden [146] (1+).

Den Einfluss von Carbohydrate Loading auf die Hospitalisationsdauer wurde in diversen Studien untersucht. In einer kleinen prospektiven RCT mit insgesamt 36 Patienten mit elektiven kolorektalen Eingriffen (nüchtern vs. Wasser vs. Maltodextrin-Lösung) konnte die Länge des Krankenhausaufenthaltes verkürzt werden (Studienlösung vs. Wasser, p=0,019) [147] (1+).

Zusätzlich setzte bei Patienten mit Carbohydrate Loading die Darmfunktion früher ein und die Patienten konnten im Schnitt einen Tag früher entlassen werden [140] (1-).

Zwei Metaanalysen von 21 prospektiven RCT mit insgesamt 1.685 Patienten [148] (1++), bzw. 27 prospektiven RCT mit 1.976 Patienten [149] (1++) zeigten beide eine Reduktion der Hospitalisationsdauer nach präoperativem Carbohydrate Loading, zumindest für größere abdominale Eingriffe. Allerdings ist die Evidenz, dass Carbohydrate Loading zu einer Reduktion der Hospitalisationsdauer führt, als gering oder sehr gering zu werten aufgrund der großen Heterogenität und Qualität der

analysierten Studien. Bezüglich der Hospitalisationsdauer gab es in den erwähnten Studien keinen Unterschied in der Placebogruppe und in der Gruppe mit Carbohydrate Loading.

Eine noch umfangreichere Metaanalyse mit 43 Studien und 3.110 Patienten deutet auf eine geringe Reduktion der Länge des Krankenhausaufenthaltes im Vergleich zur Nüchterngruppe hin, zeigte jedoch keinen Vorteil im Vergleich zu Wasser oder Placebo. Unterschiede bezüglich der Komplikationsrate konnten nicht festgestellt werden [121] (1++). Der neuste systematische Review mit 22 RCT und 2.065 Patienten zeigte eine Verbesserung des Wohlbefindens der Patienten und der Insulinresistenz, blieb jedoch in Bezug auf die Verkürzung der Hospitalisationsdauer vage [150] (1++).

Obwohl hauptsächlich in der Kolonchirurgie auf eine ausgeprägte Sammlung von guten Studien bezüglich Carbohydrate Loading zurückgegriffen werden kann, sind mittlerweile auch Studien in anderen Fachbereichen, wie in der Neurochirurgie, Thoraxchirurgie, bariatrischen Chirurgie und auch Kinderchirurgie durchgeführt worden. Diese Studien zeigten unterschiedliche Ergebnisse.

So konnte in der Thorax- und bariatrischen Chirurgie durch Carbohydrate Loading die Übelkeit und der Schmerzmittelbedarf verbessert werden [151, 152] (1-), bei Patienten mit neurochirurgischen Eingriffen verbesserte sich die Glukose-Homöostase, die Handkraft und die Lungenfunktion [153] (1-), während bei kinderchirurgischen Eingriffen lediglich die Übelkeit und der Mageninhalt verringert werden konnte [123] (1-).

Zwei aktuelle Studien aus der Schilddrüsenchirurgie zeigen unterschiedliche Ergebnisse. Die größere der beiden weist in fast allen gemessenen Parametern eine Verbesserung der Symptomatik in der Kohlenhydrat-Gruppe auf [153]. Die zweite Studie mit 50 Patienten konnte nur eine Verbesserung des Wohlbefindens und Patientenzufriedenheit nachweisen [154].

Des Weiteren gibt es 3 RCT zum Carbohydrate Loading aus der Gynäkologie. Eine Studie untersuchte Patienten mit einem geplanten Kaiserschnitt und konnte eine Verbesserung des Wohlbefindens gemessen mit einer visuellen Analogskala zeigen. Komplikationsrate und Krankenhausverweildauer waren nicht unterschiedlich [155] (1-).

Die zweite Studie wurde bei Patienten mit gynäkologischen Tumoren durchgeführt und die Patienten wiesen eine bessere Handkraftstärke, einen höheren Anteil erhaltener Muskelmasse, eine geringere CRP/Albumin-Ratio sowie eine signifikant bessere postoperative Darmfunktion auf [156] (1-). Die dritte RCT beschäftigte sich mit der Frage der Tumorproliferation und klinischem Outcome bei Patienten mit Carbohydrate Mammakarzinom. Die Autoren ledialich Loading und konnten in Subgruppenanalyse von ER+ T2-Tumoren eine erhöhte Proliferationstendenz und ein schlechteres Relapse-free survival in der Gruppe mit Kohlenhydraten aufzeigen. Da dies jedoch nicht den primären Endpunkt der Studie darstellte und die Fallzahl für eine Überlebensanalyse aufgrund der geringen Fallzahl nicht gepowert war, haben diese Ergebnisse keinen Einfluss auf unsere Empfehlung genommen [157].

Zusammenfassend muss anhand der oben aufgeführten Studien und Metaanalysen postuliert werden, dass der Effekt des Carbohydrate Loading vor allem bei großen und speziell bei abdominalen Eingriffen wirksam ist. Ein sicherer Einfluss auf die Senkung von Komplikationen ist bisher jedoch nicht gezeigt worden. Wahrscheinlich, weil bei diesen Eingriffen der perioperative Stressmetabolismus besonders ausgeprägt ist. Zum jetzigen Zeitpunkt sind die Daten, bei jeweils relativ kleinen Fallzahlen, zu wenig robust um eine Empfehlung bezüglich des routinemäßigen Einsatzes von Kohlenhydraten vor chirurgischen Eingriffen abzugeben. Hier sind noch weitere, qualitativ gute RCT mit einer großen Patientenanzahl notwendig. In welche Richtung sich die präoperative Kohlenhydratgabe entwickeln könnte, zeigen die 2 größten RCT von Gianotti et al. [146] und Savluk et al. [158], die eine signifikante Reduzierung des Insulinbedarfs und eine Verbesserung bei den "weichen" Kriterien wie Patientenbefinden nachgewiesen haben, jedoch keinen Unterschied bei dem "harten" Parameter postoperative Komplikationen. In einer RCT an 139 Patienten mit Gastrektomie hat die doppelte Gabe (Abend und Morgen) keine Vorteile gegenüber der alleinigen Morgengabe des Kohlenhydrat-Drinks gezeigt [159] (1+). Dies bestätigt eine aktuelle Netzwerk-Metaanalyse mit Einbeziehung dieser Studien. Hier zeigten sich Vorteile für die Kohlenhydrat-Gabe bezüglich PONV, Glukosehomöostase, Inflammation und Krankenhausverweildauer [160].

2.3 Ist eine Pause der oralen/enteralen Nahrungseinnahme nach einem chirurgischen Eingriff prinzipiell notwendig?

Empfehlung 3	
Α	Die orale/enterale Nahrungsaufnahme soll nach chirurgischen Eingriffen frühzeitig begonnen werden (BM, IE).
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Empfehlung 4	
KKP	Der orale Kostaufbau soll an die Art des chirurgischen Eingriffs und die individuelle Toleranz adaptiert werden.
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar zu den Empfehlungen 3 und 4

Orale Ernährung (bilanzierte Krankenhausdiät und/oder ONS) kann - in den meisten Fällen - direkt nach dem chirurgischen Eingriff bei neurologisch vollständig wachem Patienten wiederaufgenommen werden. Sowohl für Cholezystektomien wie auch kolorektale Resektionen konnte gezeigt werden, dass weder die ösophagogastrische Dekompression noch verzögerte orale Nahrungsaufnahme einen positiven Effekt aufweisen [161-163] (1+, 1+, 1++). Frühe orale oder enterale Ernährung, klare Flüssigkeiten am ersten oder zweiten postoperativen Tag miteingeschlossen, verursachte keine Einschränkung der Anastomosenheilung im Kolon oder Rektum [163-168] (1+, 1+, 1+, 1+, 1++) und führt vielmehr zu einem signifikant kürzeren Krankenhausaufenthalt [169-172] (1+, 1+, 1+, 1++). Dies konnte durch systematische Cochrane Reviews bestätigt werden, zuletzt mit 17 prospektiven RCT und 1.437 eingeschlossenen Patienten mit Operationen am unteren Gastrointestinaltrakt [173] (1++).

Mehrere Metaanalysen demonstrieren signifikante Vorteile bezüglich der Komplikationsraten im allgemeinen [172, 174, 175] (alle 1++), aber auch speziell in Bezug auf Wundinfekte, intraabdominelle Abszesse, sowie Anastomoseninsuffizienz [172, 175]. Andere zeigten, dass eine frühe orale Kost diesbezüglich keine Nachteile mit sich bringt [176] (1++).

Frühe EE ist zudem eine zentrale Komponente von ERAS, welches signifikant weniger Komplikationen und eine Verkürzung des Krankenhausaufenthaltes in mehreren Metaanalysen erbrachte [17, 19, 26] (alle 1++). Auch ohne Teilnahme an einem ERAS Programm verkürzt die frühe orale Nahrungsaufnahme den Krankenhausaufenthalt [177] (2+).

Im Vergleich zum traditionellem Kostaufbau, verkürzte eine freie Diät am zweiten postoperativen Tag nach chirurgischen Eingriffen die Zeit bis zur Toleranz der oralen Nahrung ohne eine höhere Rate der erneuten Anlage einer Magensonde. Keine Unterschiede wurden bezüglich der Dauer des postoperativen Ileus gefunden [178] (1+).

Neuere Studien deuten darauf hin, dass durch eine frühe orale Ernährung die postoperative Stressreaktion, gemessen an der Menge zirkulierender inflammatorischer Zytokine, reduziert wird [179] (1+).

Sogar nach Gastrektomien führte der Verzicht auf eine Magensonde zu einer Verkürzung des Krankenhausaufenthaltes [180] (1+). Eine Metaanalyse von 15 Studien (davon 8 RCT) mit 2.112 Patienten mit einem Eingriff am oberen Gastrointestinaltrakt erbrachte ebenfalls eine Verkürzung des Krankenhausaufenthaltes in der Gruppe mit früher oraler Ernährung, die Komplikationsrate insbesondere die Rate an Anastomoseninsuffizienzen war nicht unterschiedlich [181] (1++).

Obschon eine frühe orale Ernährung nach Ösophagusresektion kontrovers diskutiert wird [182] deutet die aktuelle Datenlage darauf hin, dass auch in diesem Kontext ein früher oraler Kostaufbau einer oralen Nahrungskarenz mit EE mindestens ebenbürtig ist.

So zeigen neue Studien [183-185] (1++, 1++, 1+), dass eine frühe orale Ernährung nach minimalinvasiver, thorakaler Ösophagusresektion sicher ist und keine Unterschiede bezüglich Komplikationsraten zeigen. Zudem konnte gezeigt werden, dass ein früher oraler Kostaufbau ein schnelleres in Gang kommen der Darmaktivität und einen verkürzten Krankenhausaufenthalt mit sich bringt [186], sowie die kurzfristige Lebensqualität verbessert [187].

Bei der offenen Ösophaguschirurgie, sowie bei einer zervikalen Anastomose ist die Situation weiterhin unklar. So deuten 2 kürzlich publizierte retrospektive Studien [188,

189] (beide 2+) darauf hin, dass ein früher oraler Kostaufbau erhöhte Leckageraten aufweist. Bevor hier der sichere Einsatz einer frühen oralen Ernährung erfolgen kann, bedarf es einer Untersuchung anhand qualitativ hochstehender Studien [190-192].

In der Pankreaschirurgie konnte mit der Implementation von ERAS eine Reduktion der Komplikationsrate und eine verkürzte Krankenhausaufenthaltsdauer nachgewiesen werden [26]. In einer randomisierten multizentrischen Studie konnte nachgewiesen werden, dass die orale Ernährung weder zum gehäuften Auftreten von postoperativen pankreatischen Fisteln (POPF) führt und auch bezüglich der Heilung von POPF der EE ebenbürtig ist [170]. (1++). Auch bei Patienten mit POPF ist eine orale Ernährung ohne Risiko für eine klinische Verschlechterung mit Verlängerung der Notwendigkeit einer Drainage und prolongierter Krankenhausverweildauer möglich [193] (1++).

Eine Metaanalyse in der Urologie konnte zeigen, dass die frühe EE zu einer signifikanten Senkung der Rate von Infekt-Komplikationen, sowie der Kosten bewirkt im Vergleich zur PE [175] (1++).

Vergleicht man offene Chirurgie mit laparoskopischen Eingriffen, so wird die orale Nahrungsaufnahme bei diesen Eingriffen durch eine frühere Rückkehr der Peristaltik und der Darmfunktion noch besser toleriert [192, 194, 195] (1-, 2++, 2++). In Kombination mit ERAS konnten keine Unterschiede zwischen laparoskopischer und offener Kolonchirurgie bei voller Implementation des Programmes gefunden werden [196] (1-). In einem multizentrischen RCT war der Krankenhausaufenthalt signifikant kürzer bei laparoskopischer Chirurgie [197] (1+). Eine kürzlich erschienene Metaanalyse bestätigte die Vorteile der Kombination von ERAS und laparoskopischer Chirurgie in Bezug auf Morbidität und Krankenhausaufenthalt [198] (1++).

Das Ausmaß der oralen Nahrungsaufnahme sollte selbstverständlich an die gastrointestinalen Funktion und die individuelle Toleranz der Patienten angepasst werden [164-166, 174, 199-201] (1+, 1+, 1+, 1+, 1+, 1+, 1+) (1++). Dies zeigt auch eine Studie bei älteren chinesischen Patienten, die bei beeinträchtigter oraler Toleranz der Nahrung mehr Übelkeit, Erbrechen, Magenretention, intestinale Obstruktion und eine höhere Wiederaufnahmerate in der ERAS-Gruppe im Vergleich zur konventionellen Gruppe aufwies [202] (1-). So sollte insbesondere bei älteren Patienten (>75 Jahre) ein vorsichtigeres Vorgehen gewählt werden."

Eine frühe orale Ernährung scheint nicht nur bei der Therapie von Erwachsenen Vorteile zu bringen. So scheint, gemäß einer prospektiven randomisierten Studie, eine frühe orale Ernährung nach kongenitalen Herzoperationen bei Neugeborenen die Aufenthaltsdauer auf der Intensivstation und die Dauer einer mechanische Beatmung zu verkürzen [203] (1-). Dies, nachdem bereits bei Erwachsenen gezeigt werden konnte, dass eine frühe orale Ernährung nach Herzeingriffen sicher ist und keine erhöhten Komplikationsraten aufweist.[204] (2++).

In der kolorektalen Chirurgie besteht eine ausreichende Evidenz für die Empfehlung zum frühpostoperativen, oralen Nahrungsaufbau. Die Daten in anderen chirurgischen Bereichen weisen ebenfalls in diese Richtung, sind aber weniger eindeutig. Selbst in der Ösophagus- und Pankreaschirurgie scheint die frühe orale Ernährung der enteralen oder gar parenteralen Ernährung aber nicht unterlegen. Hier sollt aber noch an einem individualisierten Therapieansatz festgehalten werden, bis die Studienlage klarer ist.

Insbesondere bei älteren Patienten ist nach Operationen des oberen Gastrointestinaltraktes und des Pankreas zu vermehrter Vorsicht zu raten bezüglich des frühpostoperativen enteralen Nahrungsaufbaus [188, 189, 202, 205] (2+, 2+, 1+, 1+).

Ähnliches gilt für intensivmedizinische Patienten. Obwohl unter Experten ein Konsens besteht, dass auch eine Mehrheit der kritisch kranken Patienten von einer frühen EE profitiert, soll gemäß der Richtlinie der European Society of Intensive Medicine (ESICM) von 2017 im Falle von hämodynamischer Instabilität, unkontrollierter bzw. nicht-kompensierter Hypoxämie, Hyperkapnie oder Azidose bzw. bei akutem Darmverschluss, -ischämie, abdominellem Kompartmentsyndrom, intestinalen High-Output-Fisteln oder oberen gastrointestinalen Blutungen auf eine EE verzichtet werden [93, 206]. Weder die Notwendigkeit einer extrakorporalen Membranoxigenation therapeutischen (ECMO), Hypothermie, Bauchlagebeatmung, noch die intensivmedizinische Betreuung Schädelhirntrauma, Schlaganfall, nach Wirbelsäulenverletzungen, Operationen an der abdominellen Aorta (alle 4), schwerer Pankreatitis oder am Gastrointestinaltrakt (beide 3) soll eine frühe EE aufgeschoben werden [206].

3 Indikation zur Ernährungstherapie

3.1 Wann ist eine Ernährungstherapie beim chirurgischen Patienten indiziert?

Empfehlung 5	
KKP	Der Ernährungsstatus soll vor und nach größeren Eingriffen erhoben werden.
Geprüft, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

Der Einfluss des Ernährungsstatus auf die postoperative Morbidität und Letalität ist sowohl in retrospektiven [36-40] als auch in prospektiven Studien [35, 46-48, 50-53, 55-57, 59, 62, 207, 208] und einer aktuellen Metaanalyse [209] klar gezeigt worden. Eine inadäquate orale Nahrungszufuhr für mehr als 14 Tage geht mit einer erhöhten Letalität einher [210] (lb).

Größere Eingriffe, international als "major surgery" bezeichnet, betreffen im Abdomen Organresektionen wegen Tumoren oder (chronisch) entzündlichen Erkrankungen, bei denen eingriffsspezifisch schwere (infektiöse) Komplikationen über einfache Wundheilungsstörungen hinaus zu einer Verlängerung der Krankenhausverweildauer und erhöhter Letalität führen können

Auch bei kleineren Eingriffen mit Verdacht auf Mangelernährung sollte der Ernährungsstatus sorgfältig erhoben werden. Bei längerem Verlauf wird die wöchentliche Verlaufskontrolle empfohlen.

Empfehlung 6	
KKP	Bei Patienten, die voraussichtlich 5 Tage oder mehr postoperativ keine orale Nahrung aufnehmen können, soll eine Ernährungstherapie unverzüglich begonnen werden. Die Indikation besteht auch für Patienten, die für mehr als 7 Tage nicht in der Lage sind, mehr als 50 % der empfohlenen Energiemenge oral aufzunehmen.
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

Energie- und Proteinbedarf können mit 25-30 kcal/kg und 1,5 g/kg idealem Körpergewicht geschätzt werden [211].

Zwei multivariante Analysen haben für hospitalisierte Patienten im Allgemeinen sowie explizit für chirurgische Patienten mit Tumoroperationen gezeigt, dass ein Ernährungsdefizit ein unabhängiger Risikofaktor für das Entstehen von Komplikationen ist, mit einer erhöhten Letalität einhergeht und die Länge der Krankenhausverweildauer sowie die Kosten beeinflusst [65, 212].

Ernährungsdefizite sind häufig assoziiert mit der zugrunde liegenden Erkrankung (z. B. Karzinom) oder einer chronischen Organdysfunktion [64-72, 208, 213, 214] (siehe die entsprechenden organspezifischen Leitlinien). In einer prospektiven multizentrischen Observationsstudie von Patienten mit Magenkarzinom [215] waren Dysphagien und Magenausgangsstenosen signifikante unabhängige Faktoren für das Risiko einer Anastomoseninsuffizienz nach Gastrektomie. Der Ernährungsstatus beeinflusst auch das Behandlungsergebnis nach Organtransplantationen [74-82, 214] sowie die Morbidität und Letalität nach der Operation geriatrischer Patienten [84].

Die allgemeine Indikation zur medizinischen Ernährung in der Chirurgie ist die Prävention und die Behandlung einer krankheitsspezifischen Mangelernährung, wie der Ausgleich eines Ernährungsdefizits vor der Operation und der Erhalt des Ernährungsstatus nach der Operation, insbesondere wenn längere Perioden der Nüchternheit und der schweren Katabolie zu erwarten sind. Morbidität, Krankenhausverweildauer und Letalität sind die wesentlichen Endpunkte für die Evaluation des Nutzens einer Ernährungstherapie im Krankenhaus.

Nach der Entlassung aus dem Krankenhaus oder im Rahmen einer Palliation sind primäre Ziele der medizinischen Ernährung die Verbesserung des Ernährungsstatus und der Lebensqualität [100-112, 196].

Die enterale Zufuhr sollte grundsätzlich bevorzugt werden. Ausnahmen sind:

- intestinale Obstruktionen oder Ileus
- schwerer Schock
- Darmfisteln (high output)
- schwere intestinale Blutungen

Der Effekt einer EE auf das postoperative Outcome ist in vielen Studien, jedoch nicht homogen untersucht worden [145, 216-249] (lb).

Die Arbeitsgruppe hat 35 kontrollierte Studien mit Endpunkten des Outcomes durchgesehen. Hierbei wurden vor allem Patienten nach gastrointestinalen Eingriffen eingeschlossen, jedoch auch nach Trauma oder Schenkelhalsfraktur. Die EE wurde definiert als Einsatz einer oralen bilanzierten Diät (Trinknahrung) und/oder Sondennahrung. Eine frühzeitige EE wurde mit einer normalen Nahrung, der parenteralen Zufuhr von Kristalloiden und einer totalen PE verglichen. 24 der 35 Studien zeigten signifikante Vorteile der EE bezüglich einer Verminderung der Rate an infektiösen Komplikationen, der Krankenhausverweildauer und der Kosten (Ib).

In 8 der 35 Studien wurden keine Vorteile beobachtet [217, 226, 230, 234-236, 241, 247] (Ib). Einige Autoren wiesen auf mögliche Nachteile der EE hin, welche nicht in allen Studien beobachtet wurden. Die Nachteile betrafen eine verlängerte Krankenhausverweildauer [245] (Ib), eine verminderte Lungenfunktion nach Ösophagus- und Pankreasresektionen durch abdominelle Distension [249] (Ib) oder eine verzögerte Magenentleerung nach Pankreasresektion mit der Folge einer verlängerten Krankenhausverweildauer [250] (Ila). Diese Probleme könnten Folge einer zu hohen Zufuhrrate der EE in der frühen postoperativen Phase sein. Bei Patienten mit schwerem Polytrauma ist besonders auf die Toleranz der Menge der EE zu achten [251] (Ib) (siehe DGEM Leitlinie "Klinische Ernährung in der Intensivmedizin" [252]). Verglichen mit einer PE, beeinflusst eine frühe EE die postoperative Infektionsrate bei unterernährten Patienten mit gastrointestinalen Tumoren, jedoch nicht bei Patienten in gutem Ernährungsstatus [223] (Ib).

In 7 von 11 RCT [253-263] wurden lediglich Surrogatparameter des Outcomes gemessen, wie z. B. positive Effekte der EE auf die Stickstoffbilanz und Substrattoleranz. Vier der 11 Studien zeigten keine signifikanten Unterschiede zwischen einer frühen enteralen und einer Standard-Krankenhausernährung [253-255, 262] (lb). Die Vorteile einer frühzeitigen enteralen Nahrungszufuhr innerhalb von 24 Stunden sind in 2 Metaanalysen (eine davon Cochrane) gezeigt worden [176, 264]. Auf Patienten nach gastrointestinalen Eingriffen fokussierend hat eine weitere Metaanalyse [172] von 29 Studien mit 2.552 Patienten diese günstigen Auswirkungen bestätigt (la). Es konnte jedoch keine Verminderung der Letalität gezeigt werden

Die American Society for Parenteral and Enteral Nutrition (ASPEN) Leitlinien von 2016 [265] empfehlen den Beginn einer postoperativen EE wann immer möglich innerhalb von 24 Stunden.

Bei Patienten nach Schenkelhalsfraktur, die anhand des Ernährungsstatus vor der Randomisierung stratifiziert wurden, zeigte eine nächtliche nasogastrale Ernährung bei den unterernährten Patienten eine signifikante Verminderung der Rehabilitation und der postoperativen Verweildauer [218] (Ib). In einer weiteren Studie mit Sondenernährung ergab sich kein Einfluss auf das Outcome im Krankenhaus; die Sechs-Monate-Letalität wurde jedoch reduziert [246] (Ib). In einer Studie von Delmi et al. [225] (Ib) verbesserte sich bei Einsatz von einer Trinknahrung einmal täglich das Ergebnis nach 6 Monaten signifikant durch niedrigere Komplikationsrate und Letalität [225] (1-). Metaanalysen der randomisierten Studien von Elia (2016) und Gillis (2018) haben eine geringere Rate an postoperativen Komplikationen und eine kürzere Krankenhausverweildauer gezeigt [266, 267].

3.1.1 Wann ist eine kombiniert enterale/parenterale ("duale") Ernährung beim chirurgischen Patienten indiziert?

Empfehlung 7a	Empfehlung 7a	
KKP	Sofern der Energie- und Substratbedarf nicht durch eine orale und/oder enterale Ernährung allein gedeckt werden kann (<50% des Energiebedarfs für mehr als 7 Tage), kann ab Tag 3 - 4 die Kombination von enteraler und (supplementierender) parenteraler Ernährung erfolgen. (BM)	
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung	

Empfehlung 7b	
A	Die supplementierte parenterale Ernährung soll sobald wie möglich begonnen werden, wenn bei Indikation zur Ernährungstherapie eine Kontraindikation zur enteralen Ernährung besteht (z.B. intestinale Obstruktion). (BM)
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Empfehlung 70	
0	Wenn die voraussichtliche Dauer der Supplementierung zwischen 4 und 7 Tagen liegt, kann die Ernährung über einen peripheren Zugang parenteral zugeführt werden. (BM)
Neu, Stand 2022	Starker Konsens 100 % Zustimmung

Empfehlung 7d	
A	Wenn die Implantation eines zentralvenösen Katheters ausschließlich zur Durchführung einer parenteralen Ernährung erforderlich ist, soll diese Indikation kritisch in Bezug auf die voraussichtliche Ernährungsdauer gestellt werden. (BM)
Neu, Stand 2022	Starker Konsens 100 % Zustimmung

Empfehlung 7e	
KKP	Eine totale parenterale Ernährung soll begonnen werden, wenn eine enterale Ernährung nicht durchführbar oder kontraindiziert ist.
Neu, Stand 2022	Starker Konsens 100 % Zustimmung

Kommentar zu den Empfehlungen 7 a-e

In den ESPEN Leitlinien 2009 zur parenteralen Ernährung bei chirurgischen Patienten wird die PE in folgenden Fällen empfohlen [105]: Unterernährte Patienten, bei denen eine EE nicht durchführbar ist bzw. nicht toleriert wird, sowie bei Patienten, die aufgrund von postoperativen Komplikationen durch Einschränkung der gastrointestinalen Funktion unfähig zur Aufnahme und Resorption adäquater Kalorienmengen für eine Dauer von mindestens 7 Tagen sind [105]. Dies gilt ganz besonders für Patienten mit Kurzdarm <60 cm oder Peritonealkarzinose).

Die ASPEN-Leitlinien empfehlen die Durchführung einer postoperativen PE für Patienten, die ihren Energiebedarf oral für 7 bis 10 Tage nicht decken können [268].

Enteral vs. parenteral

Die Auswirkungen einer PE werden im Vergleich zu einer oralen/enteralen Standardernährung im Hinblick auf die Prognose von chirurgischen Patienten kontrovers diskutiert (siehe auch Kommentar zu Empfehlung 6) [216, 217, 221, 223, 227, 229, 233-236, 239, 241, 248, 269-276]. Die Arbeitsgruppe begutachtete die gefundenen 21 randomisierten Studien von Patienten nach abdominalchirurgischen Eingriffen unter Einschluss von Patienten mit Lebertransplantation und Polytrauma. In diesen Studien wurde eine (totale) PE entweder mit einer EE, der Zufuhr von Kristalloiden oder einer normalen Krankenhausernährung verglichen.

Enterale und parenterale Ernährung wurden in 15 Studien verglichen, von denen 6 signifikante Vorteile für die EE zeigten, vor allem durch die niedrigere Rate an infektiösen Komplikationen, einen kürzeren Krankenhausaufenthalt und niedrigere Kosten (Ib) (siehe auch Kommentar zu Empfehlung 6). Kein signifikanter Unterschied wurde in 8 von 15 Studien gefunden, wobei die meisten Autoren dennoch die EE aufgrund der niedrigeren Kosten favorisieren [220, 230, 233, 248] (Ib).

Enterale Toleranz und Beginn einer parenteralen Ernährung

Mehrere Autoren haben auf mögliche Vorteile der PE hingewiesen, wenn eine eingeschränkte Toleranz zur EE durch intestinale Dysfunktion vor allem in der frühen postoperativen Phase besteht [251]. Diese ist dann auch mit einer niedrigeren Energiezufuhr assoziiert. So ist eine adäquate Energiezufuhr bei limitierter gastrointestinaler Toleranz durch eine PE besser zu erreichen [277] (IIa). Ein Algorithmus wurde von Weimann und Felbinger (2016) vorgeschlagen [278].

Eine Metaanalyse von Braunschweig et al. [279] verglich enterale mit parenteraler Ernährung unter Einschluss von 27 Studien mit 1.828 chirurgischen und nichtchirurgischen Patienten. Hier zeigte sich eine signifikant niedrigere Infektionsrate bei oraler/enteraler Ernährung. Bei mangelernährten Patienten resultierte aus der PE jedoch eine signifikant niedrigere Letalität mit einer Tendenz zu niedrigeren Infektionsraten. Heyland et al. [280] schloss 27 Studien in einer Metaanalyse zur PE bei chirurgischen Patienten ein (Ia). Hier konnte ein Einfluss der PE auf die Letalität der chirurgischen Patienten nicht gezeigt werden. Es fand sich jedoch auch hier bei den parenteral ernährten Patienten eine niedrigere Komplikationsrate. Daraus kann gefolgert werden, dass bei Patienten mit normalem Ernährungsstatus im Fall

eingeschränkter oraler und enteraler Kalorienzufuhr (>50%) in den ersten 7 postoperativen Tagen eine PE zur Deckung des Energiebedarfs nicht unbedingt erforderlich ist.

Auf Patienten nach gastrointestinalen Operationen zielend haben Mazaki et al. eine Metaanalyse mit 29 randomisierten Studien und 2.552 Patienten durchgeführt. Hier konnten günstige Auswirkungen der EE für eine niedrigere Rate von infektiösen Komplikationen, weniger Anastomoseninsuffizienzen und eine kürzere Krankenhausverweildauer gezeigt werden [119] (1++). Zhao et al. fanden mit Einschluss von 18 randomisierten Studien mit 2.540 Patienten ein früheres Einsetzen von Flatus, eine kürzere Krankenhausverweildauer und einen höheren Anstieg des Serumalbumins [240] (1++). Betont werden muss der fehlende Einfluss auf die Letalität. Eine große multizentrische randomisierte Studie hat bei 2.388 Intensivpatienten enterale und parenterale Ernährung verglichen. Kein Unterschied wurde für die Letalität, Rate infektiöser Komplikationen und die Krankenhausverweildauer zwischen beiden Gruppen beobachtet [241] (1+).

Vor allem auf Intensivpatienten zielend liegen zum Vergleich (früh) enteraler und parenteraler Ernährung aktuell 4 Metaanalysen vor [281-284] (1+), welche zwischen 16 und 25 Studien mit 3.325 bis 3.816 Patienten einschließen. Diese haben folgende Ergebnisse:

- Im Allgemeinen hat eine früh EE keinen Einfluss auf die Letalität, aber Vorteile könnten durchaus für Subgruppen mit besonderem Risiko gelten.
- Eine frühe EE senkt signifikant das Risiko für infektiöse Komplikationen.

Es ist kritisch diskutiert worden, dass die Reduktion der Infektionsrate mehr Folge einer geringeren Kalorienzufuhr als der enteralen Zufuhr sein könnte.

In diesen Metaanalysen fehlte noch eine aktuellere randomisierte multizentrische Studie (Nutrirea-2) an 2.410 beatmeten Patienten mit Schock. Diese Studie zeigte im Vergleich einer frühen isokalorischen enteralen (n = 1.202) mit einer parenteralen Ernährung (n = 1.208) keine Vorteile bezüglich Letalität oder sekundären Komplikationen. An Tag 28 waren 443 (37 %) der enteral ernährten Patienten und 422 (35 %) der parenteral ernährten Patienten verstorben (absolute Differenz 2 % (95%CI -1.9 - 5.8); p = 0.33. Die kumulative Inzidenz von Patienten mit auf der Intensivstation erworbenen Infektionen war ohne Unterschied. (enteral: 174 -14 %, parenteral: 194 –

16 %) HR 0.89 (95%Cl 0.72 - 1.09); p = 0.25. Jedoch hatte die enterale Gruppe eine signifikant höhere Inzidenz von Erbrechen, Diarrhö, Darmischämie und Pseudoobstruktion [285].

Eine supplementierende PE (kombinierte Ernährung) ist nicht notwendig, wenn die erwartete Periode der PE unter 4 Tagen liegt. Wenn die voraussichtliche Dauer zwischen 4 und 7 Tagen liegt, kann die Ernährung hypokalorisch über einen peripheren Zugang (2 g Glukose und 1 g Aminosäuren pro kg Körpergewicht pro Tag) verabreicht werden. Wenn die Implantation des zentralvenösen Katheters zur Durchführung einer medizinischen Ernährung erforderlich ist, muss diese Indikation kritisch in Bezug auf die voraussichtliche Ernährungsdauer gestellt werden. Erst bei einer Dauer von 7 bis 10 Tagen wird die Implantation eines zentralvenösen Katheters empfohlen. Berücksichtigt werden muss bei eingeschränkter Flüssigkeitstoleranz das erforderliche hohe Volumen bei peripher venöser Ernährung.

Noch immer besteht ein Mangel an kontrollierten Daten zur kombinierten Ernährung nach elektiv chirurgischen Eingriffen. Eine RCT nach Ösophagusresektion zeigte eine signifikant verbesserte Insulinsensitivität und verminderte Glukosespiegel bei kombinierter Ernährung [286] (Ib).

Wu et al. (2017) (lb) randomisierten 80 Patienten mit Ösophagusresektion postoperativ zur Frage einer frühen parenteralen Supplementierung der EE mit dem Ziel einer Deckung des Kalorienbedarfs. Der individuelle Kalorienbedarf wurde mit indirekter Kalorimetrie bestimmt. Nur die Patienten in der kombiniert ernährten Gruppe konnten Körpergewicht und fettfreie Masse stabil halten $(0,18\pm3,38\ kg\ vs.\ -2,15\pm3,19\ kg,\ p<0.05)$ und fettfreie Masse $(1,46\pm2,97\ kg\ vs.\ -2,08\pm4,16\ kg)$. Morbidität, Krankenhausverweildauer und laborchemische Parameter waren ohne Unterschied. Jedoch zeigten sich nach 3 Monaten bei früher parenteraler Supplementierung signifikant bessere Werte der Lebensqualität für die körperliche Funktion $(71,5\pm24,3\ vs.\ 60,4\pm27,4,\ p<0,05)$ und Energie /Fatigue $(62,9\pm19,5\ vs.\ 54,2\pm23,5,\ p<0,05)$ [287].

Dhaliwal et al. [288] analysierten 2004 die bis dahin durchgeführten Studien bei kritisch kranken Patienten. Zwei dieser Studien aus den 1980er Jahren kamen von derselben Arbeitsgruppe und betrafen Patienten mit schweren Verbrennungen und Trauma. In der Metaanalyse dieser Studien konnte kein Vorteil für die kombinierte Ernährung

bezüglich Letalität, Infektionsrate, Krankenhausverweildauer und Länge der Beatmungsdauer gezeigt werden. Heyland et al. [289] raten deswegen in den kanadischen Leitlinien vom Beginn einer kombinierten enteralen und parenteralen Ernährung bei kritisch kranken Patienten generell ab. Empfohlen wird die individuelle Entscheidung in Abhängigkeit vom Ausmaß der enteralen Dysfunktionen und Toleranz.

Für kritisch Kranke sind 2 prospektiv randomisierte multizentrische Studien erschienen, die der Frage nachgegangen sind, ob bei Patienten mit enteraler Intoleranz eine parenterale Zufuhr frühzeitig ("early") innerhalb von 4 Tagen oder spät ("late") nach 7 Tagen erfolgen sollte. Die Ergebnisse sprechen dafür, eine frühzeitige parenterale Supplementierung bei mangelernährten Patienten und solchen mit voraussichtlich längerem Intensivaufenthalt spätestens ab Tag 4 zu beginnen [278, 290, 291] (siehe DGEM Leitlinie "Klinische Ernährung in der Intensivmedizin").

Bei großen chirurgischen Eingriffen erfolgt zumeist routinemäßig die Platzierung eines zentralen Venenkatheters. Es ist die Meinung der Expertengruppe, dass bei gegebener Indikation zur medizinischen Ernährung dieser Zugang auch für die supplementierende parenterale Substratzufuhr ggf. auch hypokalorisch, genutzt werden sollte.

Eine RCT hat gezeigt, dass bei einer hypokalorischen parenteralen Ernährung von 25 kcal/kg Körpergewicht und 1,5 g/kg Körpergewicht Protein pro Tag kein erhöhtes Risiko für Hyperglykämien und infektiöse Komplikationen besteht, dies jedoch bereits zu einer signifikanten Verbesserung der Stickstoffbilanz führt [292] (Ib). Die Indikation zur Implantation eines zentralen Venenkatheters mit dem ausschließlichen Ziel einer medizinischen Ernährung sollte kritisch gestellt werden. Eine Erhöhung der Energiezufuhr kann auch über eine peripher venöse Lipidzufuhr erreicht werden. Ziel der supplementierenden parenteralen Ernährung ist die Deckung des Energiebedarfs.

Mit dem Ziel, bei inadäquater oraler/enteraler Energiezufuhr den Effekt einer frühzeitigen parenteralen (E-SPN Tag 3) mit einer späten Supplementierung (L-SPN) zu vergleichen, haben Gao et al (2022) 230 Patienten mit abdominalchirurgischen Eingriffen in eine multizentrische randomisierte Studie eingeschlossen, die von der Arbeitsgruppe mit niedrigem RoB bewertet wurde (1+) [293]. Die Studie wurde nach Abschluss der systematischen Literaturrecherche im Rahmen der Delphi-Runde von den Experten beigesteuert.

Die E-SPN-Gruppe erhielt zwischen Tag 3 und 7 eine höhere mittlere (SD) Energiezufuhr im Vergleich zur L-SPN-Gruppe (26.5 ± 7.4 vs. 15.1 ± 4.8 kcal/kg täglich; p < 0.001). Die E-SPN-Gruppe hatte signifikant weniger nosokomiale Infektionen im Vergleich zur L-SPN-Gruppe (10/115 [8.7 %] vs. 21/114 [18.4 %]; Risikounterschied 9,7 %; 95%CI 0,9 % - 18,5 %; p = 0,04). Es wurden keine signifikanten Unterschiede zwischen der E-SPN-Gruppe und der L-SPN-Gruppe in der Anzahl nichtinfektiöser Komplikationen, unerwünschter Ereignisse und anderer sekundärer Endpunkte beobachtet. Ein signifikanter Unterschied wurde noch in der mittleren Anzahl der Antibiotikatherapietage zwischen der E-SPN-Gruppe und der L-SPN-Gruppe gefunden (6.0 ± 0.8 vs. 7.0 ± 1.1 Tage; mittlerer Unterschied, 1.0 Tage; 95%CI, 0.2-1.9 Tage; p = 0.01) [293].

In einer randomisierten Studie (n = 158) zur peripheren parenteralen Ernährung nach kolorektalen Resektionen im Rahmen eines ERAS Programms zeigte sich die Supplementierung (1 Tag vor und 3 Tage nach der Operation) zur Vermeidung von Komplikationen protektiv bei den Patienten mit verminderter Compliance d. h. Verzögerung des oralen Kostaufbaus und der Mobilisierung (1- moderater RoB) [294].

In der post-hoc Subgruppenanalyse profitierten besonders Patienten mit niedrigem Skelettmuskelindex (SMI) bzw. BMI \geq 35 kg/m² mit einer signifikanten Verminderung der postoperativen Komplikationen (2-) [295].

Eine europäische Expertengruppe hat die Implementierung der bisher wenig eingesetzten peripheren parenteralen Ernährung in die ERAS-Protokolle bei großen gastrointestinalen Operationen empfohlen [296], In einer europäischen Umfrage wurde der Einsatz von peripher parenteraler Ernährung von 71 % der befragten Chirurgen als weniger invasive Methode für die PE befürwortet [297]. Erst bei einer Dauer von 7 bis 10 Tagen kann die Implantation eines zentralvenösen Katheters empfohlen werden.

Bei der parenteralen Ernährung von kritisch kranken Patienten ist zur Vermeidung von Hyperglykämien eine intensivierte Insulintherapie empfohlen worden. Die Arbeitsgruppe vertritt die Meinung, dass eine intensivierte Insulintherapie auf Grund des nicht kalkulierbaren Risikos einer Hypoglykämie für chirurgische Patienten auf der Normalstation nicht geeignet ist. Im Falle einer Erhöhung des Glukosespiegels auf >150 mg% sollte im Fall einer parenteralen Ernährung die Glukosezufuhr reduziert

werden (siehe DGEM-Leitlinie "Besonderheiten der Überwachung bei künstlicher Ernährung" [298]).

Empfehlung 8	
В	Bei der parenteralen Ernährung sollten Dreikammerbeutel (all-
	in-one) den Einzelkomponenten (Mehrflaschensysteme) vorgezogen werden. (BM, HE)
Geprüft, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

In 2 RCT sind die Kosten-Nutzen-Vorteile eines Dreikammerbeutels (all-in-one) gegenüber einem Mehrflaschensystem gezeigt worden [299, 300] (lb). In der retrospektiven Analyse einer großen US-Datenbank [301] sind bei Verwendung eines Dreikammerbeutels signifikant weniger Sepsisepisoden nachgewiesen worden.

Empfehlung 9	
KKP	Für das Qualitätsmanagement bei der Durchführung einer klinischen Ernährung sollen Standardarbeitsanweisungen (SOP) verwendet werden.
Geprüft, Stand 2022	Starker Konsens 100 % Zustimmung

Kommentar

Die Anwendung von Ernährungsprotokollen und Standardarbeitsanweisungen (SOP) hat sich als vorteilhaft für die Sicherstellung der Durchführung der medizinischen Ernährung und das Erreichen des Kalorienziels gezeigt [302, 303] (III) Eine angemessene Versorgung mit Mikronährstoffen wird als wesentlich für eine langfristige totale PE angesehen. Bhattacharyya haben randomisiert positive Auswirkungen eines präoperativen Protokolls auf das Eintreten der Darmtätigkeit und den Beginn einer EE gezeigt [304].

3.2 Gibt es eine Indikation zur Supplementierung mit Glutamin?

Empfehlung 10a	
0	Eine parenterale Glutamin-Supplementierung kann nicht bei Patienten empfohlen werden, die ausreichend enteral ernährt
	werden können. (BM, HE)
Modifiziert, Stand 2022	Starker Konsens 100 % Zustimmung

Empfehlung 10	<u>)b</u>
Α	Patienten mit schwerem Leber-, Nieren- oder Multiorganversagen sollen keine zusätzliche Glutamin-Supplementierung erhalten. (BM, HE)
Neu, Stand 2022	Starker Konsens 100 % Zustimmung

Empfehlung 10c	
В	Eine zusätzlich enterale Pharmakotherapie mit Glutamin sollte generell nicht durchgeführt werden. (BM, HE)
Neu, Stand 2022	Starker Konsens 100 % Zustimmung

Kommentar zu den Empfehlungen 10 a-c

Der Stellenwert einer Glutamin-Substitution wurde in den vergangenen Jahren vielfach diskutiert, nachdem kein Nutzen einer Supplementierung oder einer hochdosierten Pharmakotherapie bei allgemeinen kritisch kranken Intensivpatienten demonstriert werden konnte [305-310]. Unterschieden werden muss eine komplementäre Strategie, so wie diese in allen Leitlinien zur Vervollständigung einer rein parenteralen Ernährungslösung empfohlen und notwendig wird, von einer Supplementierung, welche eine Verabreichung von hohen Dosierungen über den essentiell benötigten Bedarf hinausgeht, wie es z. B. in der REDOX Studie geschehen [305]. Auf Grundlage aktueller Datenlage sollte eine enterale Pharmakotherapie mittels zusätzlicher Glutaminzufuhr nicht durchgeführt werden und ebenso kann keine generelle Empfehlung zur Supplementierung von parenteralem Glutamin bei chirurgischen Patienten gegeben werden. Kleinere Studien bei Patienten mit schwerem Trauma oder

schweren Verbrennungen [311-314] konnten klinische Vorteile von mit Glutamin angereicherten enteralen Produkten demonstrieren, welche in einer groß angelegten multizentrischen Studie überprüft werden [315].

Eine Reihe älterer Studien und nachfolgenden Metaanalysen konnte signifikante Vorteile, wie verkürzte postoperative Krankenhausverweildauer und eine reduzierte Anzahl postoperativen Komplikationen nach Glutamin-Supplementierung demonstrieren [316]. Ebenso konnten 2 ältere Metaanalysen (darunter 14 RCT mit 587 chirurgischen Patienten) signifikante Vorteile nach Glutamin-Supplementierung hinsichtlich infektiöser Komplikationen und der Krankenhausaufenthaltsdauer demonstrieren [317, 318]. Darüber hinaus zeigte eine 2015 durchgeführten Metaanalyse von Kang et al in 13 RCT, darunter 1.034 chirurgischen Patienten mit Magen-Darm-Tumor eine Verbesserung der Immunantwort im postoperativen Verlauf [319]. Eine weitere Metaanalyse umfasste 19 RCT mit 1n243 Patienten und ergab eine signifikante Reduktion der Krankenhausverweildauer, wobei keine Unterschiede in der Komplikationsrate festgestellt werden konnten [320]. Eine methodische Überprüfung dieser Metaanalyse und eingeschlossenen Studien zeigte jedoch erhebliche Schwachstellen wie z. B. das Fehlen klarer Kriterien für die Definition infektiöser Komplikationen und der Heterogenität der Krankenhausaufenthaltsdauer [321].

In einer 2014 durchgeführten RCT bei 60 Patienten mit Kolonresektion zeigten sich signifikante vorteilhaft einer prä- und postoperativen Glutamininfusion hinsichtlich der perioperativen Glukose-Insulin-Homöostase und Wiederherstellung der Darmfunktion [322]. Dem gegenüber konnte in einer großen multizentrischen RCT mit normalernährten Patienten und größeren gastrointestinalen Operationen kein signifikanter Nutzen einer prä- und postoperative parenteralen Verabreichung von 0,4 g Dipeptid/kg/d im Hinblick auf die Entstehung von postoperativen Komplikationen oder bzgl. der Krankenhausaufenthaltsdauer gezeigt werden [323].

In einer weiteren multizentrischen RCT zeigte die hochdosierte Verabreichung von Glutamin einen signifikanten Anstieg der Mortalität bei kritisch kranken Intensivpatienten mit Organfunktionsstörungen [305], sodass ebenso Bedenken hinsichtlich der Anwendung bei chirurgischen Patienten auftraten.

In einer multizentrischen doppelblinden Studie an 150 chirurgischen Intensivpatienten, die Sicherheit und Effekt einer parenteralen Glutamingabe in der Standarddosis von 0,5 g/kg/d untersucht. Hierbei zeigten sich keine Sicherheitsrisiken, jedoch ebenso keine signifikanten Unterschiede hinsichtlich der primären Endpunkten Krankenhausmortalität und Infektionsrate. Mit dieser von der Arbeitsgruppe mit niedrigem RoB bewerteten Arbeit wird die Herabstufung der aktuellen Empfehlungen begründet [324].

In eine aktuelle Metaanalyse wurden 31 Studien mit 2.201 Patienten mit Operation eines kolorektalen Karzinoms eingeschlossen. Hierbei wurde Glutamin in 23 Studien parenteral, in 8 Studien enteral verabreicht. In der Glutamingruppe waren signifikant vermindert: die Raten an Wundkomplikationen (Z = 3,18, p = 0,001; RR = 0,48, 95%Cl 0,30 – 0,75, $I^2 = 0$ %), die Rate an Anastomoseneinsuffizienzen (Z = 2,98, P = 0,003; RR = 0,23, 95%Cl 0,09 – 0,61, $I^2 = 0$ %) und die Krankenhausverweildauer (Z = 4,03, P = 0,000; SMD = -1,13, 95%Cl -1,68 - -0,58, $I^2 = 85,6$ %) [325].

Hier ist kritisch zu bemerken, dass nach heutigem Kenntnisstand eine exklusive PE über 5 - 7 Tage bei den meisten chirurgischen Patienten nicht empfohlen wird, insbesondere nicht nach einer elektiven kolorektalen Operation mit einem unkomplizierten Verlauf [12, 17, 19]. Auf Grundlage der verfügbaren Daten ist die Verabreichung von Glutamin in einer Standarddosis bei Patienten ohne Organdysfunktion sicher. Es kann jedoch nur eine Expertenempfehlung für die zusätzliche Gabe bei überwiegend PE gegeben werden kann. Der mögliche klinische Nutzen einer parenteralen Verabreichung von Glutamin in Kombination mit oraler oder enteraler Ernährung, kann derzeit mangels verfügbarer Daten nicht eindeutig geklärt werden.

3.2.1 Gibt es eine Indikation für die orale Supplementierung mit Glutamin?

Empfehlung 10d	
0	Für oder gegen die orale Supplementierung mit Glutamin kann keine generelle Empfehlung gegeben werden. (BM)
Geprüft, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

Aktuell existiert nur begrenzte Evidenz über die potentiellen Effekte einer oralen Supplementierung mit Glutamin als Einzelsubstanz. Bei Patienten Bauchspeicheldrüsen-Operation erhöht die orale Konditionierung mit Glutamin, Antioxidantien und Grüntee-Extrakt signifikant die Vitamin C-Konzentrationen im Plasma im Vergleich zu Placebo und verbesserte somit die gesamte endogene antioxidative Kapazität, ohne jedoch den oxidativen Stress und die Entzündungsreaktion signifikant zu verringern [121]. Mögliche Hinweise auf einen klinischen Nutzen fehlen bislang.

Bei Verbrennungspatienten hat sich in einer Cochrane Analyse von 16 Studien mit 678 Patienten für eine vor allem glutaminhaltige orale/enterale Immunonutrition eine Reduktion der Krankenhausverweildauer (-5,65, 95%CI -8,09 - -3,22, I² = 29,5 %) und sogar der Letalität (RR 0,25, 95%CI 0,08 – 0,78, I² nicht anwendbar) gezeigt, wobei diese Ergebnisse aufgrund der relativ geringen Zahl an eingeschlossenen Studienpatienten falsch positiv sein können und kritisch zu bewerten sind [326].

3.3 Gibt es eine Indikation für eine alleinige enterale oder parenterale Supplementierung mit Arginin

Statement 1	
	Derzeit kann keine Empfehlung bezüglich der intravenösen oder enteralen Ergänzung von Arginin als Einzelsubstanz gegeben werden.
Geprüft, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

Die Daten zur Arginin-Supplementierung als Einzelsubstanz sind stark begrenzt und lassen nach Einschätzung der Arbeitsgruppe eine Empfehlung nicht zu.

In einer Metaanalyse wurden 6 Studien und 397 Patienten analysiert, die wegen Kopfoder Halskrebs operiert wurden und eine peri- und postoperative enterale Supplementierung mit Arginin in verschiedenen Dosierungen (teils in Kombination mit anderen Substanzen) erhielten. Hierbei zeigte sich eine Verringerung der Fistelbildung und Verkürzung der Krankenhausverweildauer. Hinsichtlich der Entstehung von

Wundinfektionen konnten keine signifikanten Unterschiede demonstriert werden und so zeigte sich keine Reduktion infektiöser Komplikationen [327].

Die Daten einer Langzeitbeobachtung über 10 Jahre bei 32 Patienten mit Kopf- und Halskrebs, die perioperativ eine mit Arginin angereicherte Diät erhielten, zeigte ein signifikant längeres Überleben und weniger Tumorrezidive. Kritisch anzumerken ist, dass diese Studie statistisch für einen Überlebensvorteil nicht gepowert war [328].

Eine aktuelle Sekundäranalyse einer früheren randomisierten Studie bei Patienten, die sich einer größeren Operation wegen Speiseröhren- und Bauchspeicheldrüsenkrebs unterziehen mussten, konnte die Auswirkungen einer mit Arginin angereicherten Immunnahrung auf das Langzeitüberleben nicht bestätigen [329].

3.4 Gibt es eine Indikation für eine parenterale Supplementierung mit Omega-3-Fettsäuren?

Empfehlung 11	
В	Eine postoperative parenterale Ernährung mit
	Supplementierung von Omega-3-Fettsäuren sollte bei Patienten
	eingesetzt werden, die enteral nicht ausreichend ernährt werden
	können und daher eine überwiegend parenteral oder kombiniert
	enteral/parenterale Ernährung benötigen. (BM, HE)
M 115. 1 01 10000	
Modifiziert, Stand 2022	Starker Konsens 100 % Zustimmung

Kommentar

Patienten nach chirurgischen Eingriffen zeigen regelhaft eine perioperative Entzündungsreaktion, sodass der Einsatz anti-inflammatorischer und immunwirksamer Substanzen wie Fischöl-Lösungen vielversprechend erscheint, um der Entstehung von Organdysfunktionen und Komplikationen entgegenzuwirken. Dies gilt insbesondere bei Patienten mit überschießender Entzündungsreaktion und postoperativer Indikation zur parenteralen oder kombiniert enteral/parenteralen Ernährung.

In den vergangenem Jahrzehnten wurden mehr als 10 Metaanalysen über den Gebrauch von fischölhaltigen parenteralen Ernährungslösungen publiziert [330-335],

wobei viele Studien chirurgische Intensivpatienten eingeschlossen haben und klinische Vorteile gegenüber Standardlösungen demonstrieren konnten.

Für die parenterale Supplementation mit Omega-3-Fettsäuren konnte eine Metaanalyse von 13 RCT bei 892 chirurgischen Patienten signifikante Vorteile hinsichtlich der postoperativen Infektionsrate und der Krankenhausaufenthaltsdauer zeigen [331]. Dieses wurde ebenso durch eine weitere Metaanalyse bestätigt, welche 23 Studien mit insgesamt 1.502 Patienten untersuchte [332, 336]. Eine uneinheitliche Definition für infektiöse Komplikationen sowie erhebliche Varianz in Krankenhausaufenthaltsdauer reflektiert jedoch signifikante Schwachpunkte, welche die Bewertung der hier gewonnenen Erkenntnisse erschwert [321]. Tian et al. analysierten in einer Metaanalyse mögliche Unterschiede zwischen Lipidemulsion mit Sojabohnenöl, mittelkettigen Triglyceriden (MCT), Olivenöl und Fischöl im Vergleich zu Olivenöl- und MCT- und langkettigen Triglycerid (LCT)-basierten Emulsionen [333], Hierbei konnten jedoch keine Unterschiede zwischen den Lipid-Emulsionen festgestellt werden. Vor dem Hintergrund der methodischen Schwäche, dass die Mehrheit der Studienpatienten nach einem kolorektalem Eingriff keine geeigneten Kandidaten für eine alleinige PE waren, müssen auch diese Ergebnisse kritisch betrachtet werden.

In einer randomisierten Studie mit moderatem RoB wurde eine olivenölhaltige peripherparenterale Ernährung bei Patienten einen Tag vor und 3 Tage nach kolorektalen Resektionen im Rahmen eines ERAS Programms mit normaler Flüssigkeitstherapie verglichen [294]. Randomisierte Studien zum vergleichenden Einsatz von Oliven- und Fischöl liegen für chirurgische Patienten nicht vor.

Eine kürzlich veröffentlichte nach AMSTAR II (12/16) bewertete Metaanalyse konnte in 24 randomisierten Studien bei 2.154 Patienten demonstrieren, dass mit Fischöl angereicherte Ernährungslösungen das Risiko für Infektionen (RR 0,60; 95%CI 0,49 - 0,72; p < 0,00001, $I^2 = 0$ %), und konsekutiv die Aufenthaltsdauer auf Intensivstation (– 1,95 d; 95%CI -3,49 - -0,42; p = 0,01, $I^2 = 83$ %) und im Krankenhaus (– 2,14 d; 95% CI -2,93 - -1,36, p < 0,00001, $I^2 = 51$ %) im Vergleich zu Standardlösungen ohne Fischöl signifikant reduziert. Nicht signifikant war hingegen die Verminderung der 30-Tage-Letalität (RR 0,84, 95%CI 0,65 - 1,07, p = 0,15, $I^2 = 0$ %) [337]. Die antiinflammatorischen und immunmodulatorischen Wirkungen sind einhergehend mit einer Senkung der Krankenhausverweildauer in einer sehr aktuellen nach AMSTAR II

(12/16) bewerteten Metaanalyse von 10 randomisierten Studien bei chirurgischen Patienten mit gastrointestinalem Karzinom noch einmal bestätigt worden [338].

Die möglichen Vorteile einer kurzfristigen perioperativen Omega-3-Fettsäureinfusion und dessen potentiell konditionierende Wirkung vor elektiven Operationen muss weiter geklärt werden [339]. Basierend auf der aktuell verfügbaren Evidenz, aktuellen internationalen Leitlinien (ASPEN Leitlinie [265]), mit eigener Metaanalyse jedoch niedriger Evidenz sowie den Empfehlungen einer speziellen ESPEN-Expertengruppe sollten ungesättigte Omega-3-Fettsäuren in der PE verwendet werden. Neben den Reduktion der demonstriert positiven Effekten wie mehrfach Komplikationen, kürzeren Verweildauer auf Intensivstation und im Krankenhaus zeigen fischölhaltige Lipidemulsionen ein gutes Sicherheit- und Verträglichkeitsprofil, welches insgesamt den Einsatz bei chirurgischen Intensivpatienten unterstützt [330-334, 340].

3.5 Gibt es eine Indikation für eine bestimmte orale / enterale Formel, die mit unterschiedlichen, immunologisch wirksamen Nährstoffkombinationen (Immunonutrition) angereichert ist?

Empfehlung 12	
0	Patienten, die sich einer größeren Tumoroperation unterziehen, kann präoperativ oder perioperativ eine Immunonutrition (angereichert mit Arginin, Omega-3-Fettsäuren, Ribonukleotiden) angeboten werden. (BM, HE)
Modifiziert, Stand 2022	Konsens 91 % Zustimmung

Kommentar

Operative Eingriffe, insbesondere viszeralchirurgische Tumoroperationen, können das Auftreten von postoperativen Komplikationen, wie Wundkomplikationen (Surgical-Site-Infections), Atemwegs- und Harnwegsinfektionen, sowie systemische Infektionen das postoperative klinische Ergebnis schmälern, was auch zur Verlängerung der Hospitalisation und zur Entwicklung weiterer Komplikationen führen kann. Vor diesem Hintergrund besteht die Rationale für die orale und enterale Immunonutrition mit dem

Ziel durch Stärkung des Immunsystems, um das Auftreten von infektiösen Komplikationen zu reduzieren

Eine Vielzahl an Studien mit allgemeinchirurgischen Patienten hat den Effekt von immunmodulierenden Substraten wie Arginin, Omega-3-Fettsäuren, Ribonukleotiden mit oder ohne Glutamin als Teil der oralen Trinknahrung untersucht [341-352]. Die Ergebnisse der einzelnen und resultierenden Metaanalysen legen nahe, dass die perioperative Verabreichung von immunmodulierenden Substanzen zu einer Reduktion an postoperativen Komplikationen und folglich zu einer verringerten Verweildauer im Krankenhaus beigetragen kann [341-367]. In Bezug auf die immunmodulierenden Substrate wurden die meisten RCT mit Arginin, Omega-3-Fettsäuren und Ribonukleotiden durchgeführt. Die ESPEN-Leitlinien zur Ernährung von Krebspatienten aus dem Jahr 2016 gaben eine starke Empfehlung für die perioperative Gabe von immunmodulierenden Substraten bei Patienten mit einer Tumor bedingten Resektion des oberen Gastrointestinaltrakts [368].

Die kritische Durchsicht der zahlreichen Metaanalysen zeigt eine erhebliche Heterogenität der eingeschlossenen Studien mit Unterschieden in der Behandlungsdauer, welche nach Auffassung der Arbeitsgruppe eine starke Empfehlung für eine generelle perioperative Verwendung von immunmodulierender Sondennahrung nicht zulässt [321]. Zeitpunkt und Dauer der Intervention sind von entscheidender Bedeutung und limitieren die Analyse der aggregierten Daten.

Bedeutung des perioperativen Timings

Vorangehende Studien konnten demonstrieren, dass die präoperative Einnahme von oralen Trinknahrungen für 5 bis 7 Tage, angereichert mit immunmodulierenden Nahrungssubstraten (wie z. B. Arginin und Omega-3-Fettsäuren), die postoperative Morbidität und Krankenhausverweildauer nach größeren Bauchtumoroperationen verringern kann [369-372]. Drei RCT konnten darüber hinaus demonstrieren, dass die postoperative Verabreichung von immunmodulierenden Sondennahrungen sowohl bei unterernährten [373] als auch bei normal ernährten Patienten mit Magen-Darm-Tumoren [369, 371] wirksam waren und zu einer Verringerung von postoperativen Komplikationen bei unterernährten Patienten beitrugen [374].

Durch präoperative Supplementation (5 - 7 Tage) mit Immunonutrition konnten bei Patienten mit kolorektalen und hepatobiliären Tumoren die infektiösen Komplikationen

und die Hospitalisationsdauer reduziert werden [375-378]. In manchen Untersuchungen ist die Gabe der Immunonutrition ein Teil von einer Reihe präoperativer Maßnahmen, die an Patienten vor elektiven Operationen angewendet werden (z. B. Verbesserung der Atemwegsfunktion, Hautdesinfektion etc.) [379]. Auch die Ergebnisse solcher Studien konnten eine positive Entwicklung der postoperativen Verläufe belegen, indem die infektiösen Komplikationen reduziert werden konnten, die schließlich zu einer Verkürzung der Hospitalisationsdauer führten.

Für den Vergleich von präoperativ verabreichten immunmodulierender Nährsubstrate mit oraler Standardnahrung führten Hübner et al. eine doppelblinde RCT bei chirurgischen Risikopatienten (definiert als NRS> 3) durch [380]. Im selben Zusammenhang wurde in einer weiteren RCT bei gut ernährten Patienten präoperativ eine Ernährungsintervention für 3 Tage mit oralen Trinknahrungen durchgeführt [381]. In keiner der beiden Studien konnte ein Vorteil für die Interventionsgruppe beobachtet werden. In der Metaanalyse von Hegazi et al. wurden Studien mit immunmodulierender Trinknahrung (561 Patienten) und Standardpräparaten (895 Patienten) untersucht [382]. Hier zeigte sich signifikant positive Effekte in der Interventionsgruppe mit Abnahme der infektiösen Komplikationen und Reduktion des Krankenhausverweildauer nur im Vergleich mit normaler Krankenhauskost, jedoch nicht im Vergleich mit einer oralen Standardtrinknahrung.

Demgegenüber konnte eine Cochrane-Metaanalyse zur präoperativen Gabe von immunwirksamen Trinknahrungen signifikante Vorteile in Bezug auf die Entstehung von postoperativen Komplikationen demonstrieren. Eine Vielzahl Schwachpunkten die methodologischen begrenzt jedoch Gewichtung und Generalisierbarkeit der hier resultierenden Ergebnisse, sodass diese für die Empfehlungen nicht berücksichtigt wurden [383]. Für eine kombinierte peri- und postoperative Anwendung von immunmodulierenden Trinknahrungen konnten in der Metaanalyse von Marimuthu et al. [360] signifikante Vorteile in Bezug auf die Entstehung von infektiösen Komplikationen und die Krankenhausaufenthaltsdauer gezeigt werden. Darüber hinaus bestätigten die Metaanalysen von Osland et al. sowie Song et al. diese klinischen Vorteile für die perioperative und postoperative Anwendung von immunmodulierenden Trinknahrungen [365, 366].

Für die rein postoperative Anwendung demonstrierte eine Metaanalyse von 19 RCT mit 2016 Patienten, die sich einer Ösophagektomie, Gastrektomie und

Pankreatektomie unterzogen, einen signifikant klinischen Nutzen hinsichtlich einer Verringerung der Wundinfektionen und der Krankenhausaufenthaltsdauer bei Verwendung von oralen Präparaten mit immunmodulierenden Substanzen [367]. Vor diesem Hintergrund wurde die Empfehlung zur Verwendung von mit Immunnährstoffen angereicherten Sondennahrungen mit in die Empfehlungen des sogenannten ERAS-Protokolls aufgenommen. In einer nachfolgenden randomisiert-kontrollierten Studie an 264 Patienten mit kolorektalen Operationen führte eine präoperative durchgeführte orale Diät mit Immunnährstoffen zu einer signifikanten Abnahme an postoperativen infektiösen Komplikationen im Vergleich zur oralen Standardernährung.

Für chirurgische Tumorpatienten allgemein zeigte eine Metaanalyse von 61 randomisierten Studien eine signifikante Senkung postoperativer infektiöser Komplikationen (RR 0,71 95%CI, 0,64 - 0,79, $I^2 = 0$ %), Wundinfektionen, (RR 0,72 95%CI, 0,60 - 0,87, $I^2 = 0$ %), Infektionen des Respirationstraktes (RR 0,70 95% CI, 0,59 - 0,84), der Harnwege (RR 0,69 95%CI, 0,51 - 0,94, $I^2 = 0$ %), als auch von Anastomoseninsuffizienzen (RR 0,70 95%CI, 0,53 - 0,91, $I^2 = 0$ %) und der Krankenhausverweildauer (MD -2,12 d 95%CI -2,72 - -1,52, $I^2 = 83$ %) [384].

Im Vergleich zu den früheren Studien, in denen die Immunnutrition oftmals nur postoperativ appliziert wurde, haben sich die Konzepte in Richtung prä- oder perioperativer Gabe verändert. In die aktuellsten Metaanalysen sind nur randomisierte Studien mit prä- und perioperativer Gabe von Immunonutrition aufgenommen worden [385, 386].

Bislang war offen, ob die ausschließlich präoperative Gabe Vorteile auch im Vergleich mit einer Standardtrinknahrung bietet. Auf diese Frage zielte eine aktuelle mit AMSTAR II (13/16) gut bewertete Metaanalyse ab. Verfügbaren Daten aus 16 randomisierten Studien mit 1.387 chirurgischen Patienten mit gastrointestinalem Karzinom (Immunonutrition n = 715, Kontrolle n = 672) wurden dazu untersucht. Hier führte der alleinige präoperative Einsatz für 5 - 7 Tage sowohl im Vergleich mit einer normalen Kost als auch mit einer isonitrogenen Standardtrinknahrung zu einer signifikanten Verminderung des Auftretens infektiöser Komplikationen (OR 0,52; 95%Cl 0,38 - 0,71, p < 0,0001). Die Heterogenität der Daten war gering (I² = 16 %). Bei der Krankenhausverweildauer bestand eine signifikante Verkürzung im Vergleich zur normalen Kost und eine Tendenz im Vergleich mit der Standardtrinknahrung (-1,57

Tage, 95%CI -2,48 -0.66, p = 0,0007, I² = 34 %). Unbeeinflusst waren nichtinfektiöse Komplikationen und Letalität [385].

Eine weitere danach erschienene Metaanalyse (AMSTAR II 11/16) hat 35 Studien mit 3.692 Patienten mit Operationen eines gastrointestinalen Karzinoms eingeschlossen. Hier wurde für die Intervention eine signifikante Verminderung des Auftretens von Komplikationen insgesamt (RR = 0,79 95%Cl 0,70 – 0,88, p < 0,001, I^2 = 2 %) und auch der infektiösen Komplikationen (RR = 0,66, 95%Cl 0,55 – 0,78, p < 0,001, I^2 = 45 %) sowie der Krankenhausverweildauer gezeigt [387].

Zwei Studien haben mit großen Kohorten Daten aus der Versorgungsrealität geliefert. Die retrospektive Analyse einer französischen Gesundheitsdatenbank von 1.771 Patienten mit großen Tumoroperationen am Gastrointestinaltrakt hat keine Vorteile der präoperativen Gabe für die 90-Tage Morbidität und das Überleben, jedoch für die Krankenhausverweildauer gezeigt (-1,26 d, 95%CI: -2,4 - -0,1)] [378].

Immunnutrition als Teil eines präoperativen «Wellness» Bündels u. a. mit Chlorhexidinbad, Spirometer und Motivation zur Nikotinkarenz hat bei 12.396 chirurgischen Patienten zu einer erheblichen Senkung der nosokomialen Infektionen mit Surgical-Site-Infections und Harnwegsinfektionen geführt [379] (2+).

Für Patienten mit kolorektalen Resektionen konnten in einer großen prospektiven Kohortenstudie mit 3.375 Patienten und Propensity Score Matching als Kontrolle auch in der Versorgungssituation bei Einnahme einer immunmodulierenden Trinknahrung 3 Mal täglich für 5 Tage eine signifikante Reduktion der Krankenhausverweildauer beobachtet werden [376]. Ohne Stratifikation nach dem Ernährungsstatus wurde in einer randomisierten Studie bei 176 Patienten mit kolorektalen Resektionen wegen Karzinoms die Immunutrition als Supplement mit der normalen oralen Diät verglichen. Eine Stratifikation nach dem Ernährungsstatus erfolgte nicht. Signifikante Unterschiede in der Rate infektiöser Komplikationen und Krankenhausverweildauer fanden sich nicht. Die supplementierte Gruppe wies jedoch als Zeichen der Erholung einen signifikanten postoperativen Anstieg des Körpergewichts auf $(\pm 0.4 \pm 2.1 \text{ vs.} -0.7 \pm 2.3 \text{ kg}, p = 0.002)$ [388].

Eine Metaanalyse von 8 randomisierten und einer nicht randomisierten Studie mit 1.400 Patienten zeigte auch für Tumorpatienten mit gutem Ernährungsstatus nach der Intervention eine signifikante Verminderung der postoperativen infektiösen

Komplikationen (OR = 0.74, 95%CI 0.57 - 0.96, I² = 35%) mit einem Trend zur Senkung der Morbidität insgesamt und der Krankenhausverweildauer [389].

Ein signifikanter Nutzen zeigte sich zudem bei nach präoperativer Gabe bei Patienten mit Kopf-Hals-Tumoren bezüglich der postoperativen Fistelrate [390] und für Patienten mit Gastrektomie, (Surgical-Site-Infections, Verweildauer, Kosten) [391, 392]. Wie auch Quiang et al. (2017) [393] haben Cheng et al (2018) für Patienten mit Gastrektomie neben der signifikanten Verbesserung der zellulären Immunität (CD4+, CD4+/CD8+, IgM und IgG eine signifikante Senkung der Komplikationsrate gefunden [394] (1++). Die Netzwerkanalyse von Song et al (2017) von 11 Studien mit 840 Patienten spricht für die Überlegenheit der Kombination von Arginin, Omega-3-Fettsäuren und Ribonukleotiden gegenüber Arginin und Ribonukleotiden und Arginin und Glutamin [392].

Zwei Metaanalysen von 6 bzw. 7 qualitativ guten randomisierten Studien mit 320 bzw. 604 Patienten haben für Patienten mit Ösophagusresektion keine klinischen Vorteile der Immunmodulation gezeigt [395, 396].

Für Patienten mit Leberresektionen haben 2 Metaanalysen jeweils (8 prospektive RCT mit 805 Patienten, 9 prospektive RCT mit 966 Patienten) bei Einsatz Omega-3-Fettsäuren enthaltender Diäten eine signifikant niedrigere Rate der Komplikationen insgesamt, der infektiösen Komplikationen sowie eine signifikant kürzere Krankenhausverweildauer gezeigt [397, 398]. Eine weitere Metaanalyse mit 11 Studien und 1.084 Patienten fand für große Leberresektionen, vor allem bei hepatozellulärem Karzinom eine signifikante Senkung der Rate an Wundinfektionen und der Krankenhausverweildauer [399].

Bei Patienten mit Pankreasresektionen haben 2 Metaanalysen (jeweils 4 prospektive RCT mit 299 Patienten und 6 prospektive RCT mit 366 Patienten) ebenfalls eine signifikant niedrigere Rate der infektiösen Komplikationen und der Krankenhausverweildauer gezeigt [400, 401].

Bisher hat nur eine randomisierte Studie den Einsatz einer Immunonutrition im Vergleich mit einer hochkalorischen isonitrogenen Standardnahrung bei Patienten mit kolorektalen Resektionen innerhalb eines ERAS Programms untersucht. In der SONVI Studie wurden multizentrisch 264 Patienten randomisiert und erhielten 7 Tage vor und 5 Tage nach der Operation die Intervention bzw. Kontrolle. Die Patienten waren

vergleichbar im Alter, Geschlecht, chirurgischem Risiko, Komorbidität, Labor und Ernährungsstatus. Die mediane Krankenhausverweildauer war 5 Tage kürzer ohne Unterschied zwischen den Gruppen. Eine signifikante Verminderung der infektiösen Komplikationen wurde in der Interventionsgruppe beobachtet (23,8 % vs. 10,7 %, p = 0,0007). Bei den infektiösen Komplikationen fand sich ein signifikanter Unterschied bei den Wundinfektionen (16,4 % vs. 5.7 %, p = 0,0008) (1+) [402].

In einem sogenannten Umbrella Review wurden 20 Metaanalysen (11 zu abdominellen Eingriffen, eine zweimal und 8 zu Pankreas-, Ösophagus-, Leber- oder kolorektalen Operationen eingeschlossen. Insgesamt war die Immunonutrition bei erheblicher Heterogenität mit einer signifikant geringeren Rate an infektiösen Komplikationen assoziiert (OR 0,60 95%Cl 0,54 – 0,65, l² = 64 %) und niedrigerer postoperativer Morbidität (OR 0,78 95%Cl 0,74 – 0,81, l² = 30,3 %). Der Ausschluss von 3 Studien mit erheblicher Heterogenität änderte die Ergebnisse nicht. Es bestand kein signifikanter Unterschied im Timing der Intervention (prä-, peri- oder nur postoperativ). (1++) [403]. Danach ist die Überlegenheit einer ausschließlich präoperativen Intervention weiter nicht eindeutig.

Im Hinblick auf langfristige Ergebnisse fehlen adäquate designte Studien um etwaige Effekte von immun-modulierenden Nährstoffen zur analysieren. In einer 10-Jahres Nachbeobachtung von 32 Patienten mit Kopf- und Halstumoren, denen perioperativ eine mit Arginin angereicherte Diät verabreicht worden war, konnte ein signifikant längeres Überleben sowie eine geringere Rezidivrate demonstriert werden [328]. Dem gegenüber konnte in einer post-hoc-Analyse einer kleineren RCT an 99 Patienten mit Magenkarzinom keine Verbesserung des Langzeitüberlebens durch postoperative Initiierung einer EN in Kombination mit Glutamin, Arginin und Omega-3-Fettsäuren demonstriert werden [340].

In Deutschland ist die Immunonutrition ambulant nicht erstattungsfähig sondern Individuelle Gesundheitsleistung (IGEL), während diese in Österreich und der Schweiz als Kassenleistung verschreibungsfähig ist.

Synbiotika

Das Mikrobiom als wichtiger Faktor bei der Entstehung zahlreicher Erkrankungen tritt zunehmend in den Fokus. Die Gabe von Probiotika oder Synbiotika (Kombination von Prä- und Probiotika) zur Beeinflussung des Mikrobioms mit günstigen Auswirkungen auf die intestinale Barriere und lokale Immunabwehr konnte in mehreren prospektivrandomisierten, Placebo kontrollierten klinischen Studien und deren Metaanalysen vor allem nach großen viszeralchirurgischen Eingriffen (Pankreas, Leberresektion, Lebertransplantation, Rektum), aber auch bei Traumapatienten auf Intensivstation die postoperative Infektionsrate senken [404].

Eine Metaanalyse von 13 RCT mit 962 Patienten ergab, dass die probiotische und symbiotische Anwendung bei elektiven chirurgischen Patienten zu einer signifikanten Reduktion septischer Komplikationen führen kann [404].

Eine weitere Metaanalyse von 34 prospektiv RCT mit Einschluss von 2.723 Patienten und abdominellen Eingriffen (kolorektal, oberer Gastrointestinaltrakt, hepatopankreatobiliär und Lebertransplantation) hat die gute Toleranz ohne unerwünschte Ereignisse bestätigt. Die perioperative Gabe sowohl von Probiotika als auch Synbiotika führte im Vergleich mit den Kontrollen zur Reduktion der postoperativen infektiösen Komplikationen (RR 0,56; 95%CI 0,46 - 0,69; p < 0,00001, n = 2.723, I² = 42 %). Dabei zeigten Synbiotika einen größeren Effekt als Probiotika allein (Synbiotika RR: 0.46; 95%CI 0.33 - 0.66; p < 0.0001, n = 1.399, I² = 53%Probiotika RR: 0,65; 95%Cl 0,53 - 0,80; p < 0,0001, n = 1.324, l^2 = 18%). Nur Synbiotika führten zur signifikanten Verkürzung der Krankenhausverweildauer (Synbiotika gewichteter mittlerer Unterschied: -3,89; 95%CI -6,60 - -1,18 d; p = 0,005, n = 535, $I^2 = 91$ % Probiotika RR: -0,65; 95%CI -2,03 - 0,72; p = 0,35, n = 294, $I^2 = 0$ 65 %). Kein Unterschied bestand in der Letalität (RR: 0,98; 95%Cl 0,54 - 1,80; p = 0.96, n = 1.729, $l^2 = 0$ %) und den nichtinfektiösen Komplikationen [405] (1++).

Eine Metaanalyse von 5 Studien mit 281 Traumapatienten zeigte signifikante Vorteile hinsichtlich einer Verringerung der nosokomialen Infektionen (p = 0,02), der Rate an beatmungsassoziierten Pneumonien (3 Studien, p = 0,01) und Aufenthaltsdauer auf der Intensivstation (2 Studien, p = 0,001). Kein Unterschied konnte jedoch hinsichtlich der Mortalität beobachtet werden, wobei sich eine starke Heterogenität zwischen den Studien zeigte [406]. Eine Studie mit Patienten nach neurochirurgischem Trauma [407] zeigte bei Einsatz einer Sondennahrung, die mit Glutamin und Probiotika angereichert war, signifikante Vorteile hinsichtlich Entstehung von infektiösen Komplikationen und der Verweildauer auf der Intensivstation.

In einigen Studien wurde zudem ein positiver Effekt auf die Leberfunktion und/oder Leberregeneration beobachtet [408]. In neueren, gut konzipierten prospektiven Studien vor allem mit Laktobazillen und Bifidobakterien, hatten Patienten, die nach Listung zur Lebertransplantation Synbiotika bis zur Transplantation erhielten, Infektionsraten und signifikant niedrigere niedrigere Bilirubinund Transaminasenwerte nach 30 und 90 Tagen als die Kontrollgruppe (4,8 % versus 34,8%) [409]. Nach Leberresektion bei kolorektalen Lebermetastasen konnte durch perioperative Gabe von Probiotika im Vergleich zur Kontrolle ebenfalls die Rate von infektiösen Komplikationen und die Konzentration von Plasma-Endotoxin signifikant gesenkt werden [410]. Eine nicht-randomisierte Studie an Patienten nach Leberresektion ergab wiederum keinen Unterschied hinsichtlich chirurgischer Infektionen bei der Gabe von Clostridium butyricum und Präbiotika verglichen mit der konventionellen Gruppe [411]. Patienten nach Kolonresektion wurden 4 Wochen postoperativ für 6 Monate (während einer Radiochemotherapie) mit Laktobazillen und Bifidobakterien behandelt. Im Vergleich zu Placebo wurde die Konzentration von proinflammatorischen Zytokinen gesenkt [412]. Nach metabolischer Chirurgie wiederum konnten in einer Placebo kontrollierten, doppelblinden Studie durch Gabe von Probiotika anti-inflammatorische Effekte erzielt werden [413]. Da die vorliegenden Studien aber sehr heterogen konzipiert sind bezüglich Beginn und Dauer der Therapie, Zusammensetzung der Synbiotika und Art der Applikation, ist eine generelle Empfehlung schwer zu treffen, zumal in einer großen multizentrischen Studie an Patienten mit schwerer Pankreatitis eine erhöhte Mortalität beobachtet wurde [414]. Dies war allerdings die einzige Studie mit schwerwiegenden Nebenwirkungen. Kritisiert wurde, dass in dieser Studie erstmalig eine sehr hochkonzentrierte Synbiotikakombination eingesetzt wurde.

Ein weiterer einschränkender Faktor ist weiterhin die sehr begrenzte Verfügbarkeit von wirksamen, in klinischen Studien getesteten Synbiotikapräparaten.

Bei chirurgischen Patienten nach kolorektalen Operationen konnte im postoperativen Verlauf eine signifikante Reduktion an Pneumonien (2,4 vs. 11,3 %, p = 0,029), Reduktion der Wundinfektionen (7,1 vs. 20,0 %, p = 0,020) und Verringerung der Anastomoseninsuffizienzen demonstriert werden (1,2 vs. 8,8 %, p = 0,031) [415]. Ebenso konnte eine Verringerung der Infektionen nach Pankreas- und Hepatobiliärresektionen sowie nach Lebertransplantationen gezeigt werden [416-421].

Keine Unterschiede ergaben sich hinsichtlich der Wirkung von lebenden oder hitzegetöteten Laktobazillen [417, 418, 422]. Eine relevante signifikant verringerte Infektionsrate wurde ebenso nach Anwendung bei kritisch kranken Traumapatienten beobachtet [415].

Neben der Reduktion infektiöser Komplikationen konnten Kanazawa et al. eine verkürzte Dauer der Antibiotikatherapie sowie Reduktion der Krankenhausaufenthaltsdauer bei Patienten mit hepatobiliären Eingriffen bei Gallengangskrebs demonstrieren [416]. Eine Metaanalyse von 13 RCT mit 962 Patienten ergab, dass die probiotische und symbiotische Anwendung bei elektiven chirurgischen Patienten zu einer signifikanten Reduktion septischer Komplikationen führen kann [404]. Eine Metaanalyse von 5 Studien mit 281 Traumapatienten zeigte signifikante Vorteile hinsichtlich einer Verringerung der nosokomialen Infektionen (p = 0,02), der Rate an beatmungsassoziierten Pneumonien (3 Studien, p = 0,01) und Aufenthaltsdauer auf der Intensivstation (2 Studien, p = 0,001). Kein Unterschied konnte jedoch hinsichtlich der Mortalität beobachtet werden, wobei sich eine starke Heterogenität zwischen den Studien zeigte [406]. Eine Studie mit Patienten nach neurochirurgischem Trauma [407] zeigte signifikante Vorteile einer Sondennahrung, die mit Glutamin und Probiotika angereichert war, hinsichtlich Entstehung von infektiösen Komplikationen und der Verweildauer auf der Intensivstation. Unklarheit besteht aktuell noch über die effektivste Art von Probiotika, sodass weitere adäguate designte klinische Studien in diesem Feld noch dringend erforderlich sind.

Eine detaillierte Übersicht über vorhandene Studien [414-418, 420-440] zum Einsatz verschiedener Synbiotika bei verschiedenen chirurgischen Eingriffen ist als Zusatzmaterial zu dieser Leitlinie abrufbar.

Auf Grundlage aktuell verfügbaren und hier diskutierten Evidenz bleibt der klinische Nutzen von gemischten immunmodulierender Nährsubstrate oder die reine Pharmakonutrition im perioperativen Kontext unklar. Die enterale und parenterale Ernährungstherapie bei chirurgischen Patienten kann u. a. durch den Zeitpunkt des Beginns, die Wahl des Applikationsweges, die Menge und Zusammensetzung sowie Wahl spezieller, immunmodulierender Nährsubstrate variieren. Adäquat designte, große multizentrische Studien sind weiter nötig und in Durchführung [315, 441] um die Evidenz eines potentiellen klinischen Nutzens bei allgemeinen oder speziell vulnerablen Patienten zu prüfen.

4 Präoperative Ernährung

4.1 Welche Patienten profitieren von einer präoperativen Ernährungstherapie?

Empfehlung 13	
A/0	Patienten mit hohem metabolischem Risiko sollen eine Ernährungstherapie präoperativ erhalten (A) sogar, wenn dadurch die Operation verschoben wird (BM). Ein Zeitraum von 10 - 14 Tagen kann empfohlen werden (0)
Modifiziert, Stand 2022	Konsens 92 % Zustimmung

Empfehlung 14	
Α	Die orale/enterale Zufuhr soll gegenüber der parenteralen Ernährung bevorzugt werden. (A) (BM, HE, QL).
Modifiziert, Stand 2022	Starker Konsens 100 % Zustimmung

Kommentar zu den Empfehlungen 13 und 14

Mit dem Ziel einer Senkung der postoperativen Komplikationen ist beim Vorliegen einer Mangelernährung in mehreren prospektiven randomisierten Studien der Nutzen einer präoperativen medizinischen Ernährung gezeigt [242, 248, 269, 275] (Ib) und durch 3 Metaanalysen belegt worden [280, 442] (Ia). Hierbei wurden die Patienten für eine Dauer von mindestens 7 bis 10 Tagen präoperativ medizinisch ernährt.

Von der ESPEN ist 2017 das schwere metabolische Risiko bei Vorliegen eines der folgenden Kriterien definiert worden:

- Gewichtsverlust >10-15 % innerhalb von 6 Monaten
- BMI <18,5 kg/ m^2
- SGA Grad C, NRS >5
- Serumalbumin <30 g/L (Ausschluss einer Leber- oder Niereninsuffizienz)

Diese Parameter reflektieren sowohl den Ernährungsstatus als auch die krankheitsassoziierte Katabolie.

Hierbei sieht die Arbeitsgruppe in Übereinstimmung mit der Literatur die Hypoalbuminämie als evidenzbasierten prognostischen Faktor bei chirurgischen

Patienten [207, 443]. Diese ist jedoch vor allem Ausdruck der Krankheitsschwere und der krankheitsassoziierten Katabolie als des Ernährungsstatus. Auch neuere Daten bestätigen die prognostische Bedeutung des Serumalbumins für das Entstehen postoperativer Komplikationen [212, 444-446].

Kuppinger et al. haben bei Patienten mit abdominalchirurgischen Eingriffen die verminderte Nahrungsaufnahme in der Woche vor der stationären Aufnahme in ihrem Patientengut als einzigen unabhängigen Risikofaktor für das Entstehen postoperativer Komplikationen herausgearbeitet [91].

Die Höhe des präoperativen Gewichtsverlustes und des Serumalbuminspiegels waren in der Untersuchung von Pacelli et al. [235] bei 145 Patienten mit Gastrektomie oder subtotaler Magenresektion ohne signifikanten Einfluss auf das Entstehen postoperativer Komplikationen (IIa). Bei genauerer Betrachtung der Daten zeigte sich jedoch, dass der prozentuale Anteil der so definierten Risikopatienten mit postoperativen Komplikationen höher war. Die Studie war für diese Fragestellung statistisch nicht ausgelegt. Diese Studiendaten zeigen jedoch, dass die Zahl von Patienten mit Magenkarzinom und kritischem Gewichtsverlust oder erniedrigtem Serumalbumin unter 20 % liegen dürfte.

Dauer der präoperativen Ernährungstherapie sollte entsprechend Die metabolischen Risikos gewählt werden. Bei 800 Patienten mit Magenkarzinom und hohem metabolischen Risiko nach der ESPEN Definition ergab der Vergleich zwischen einer adäquaten Energiezufuhr für mindestens 10 Tage und einer unzureichenden oder ausbleibenden Ernährungstherapie eine signifikant niedrigere Inzidenz der Surgical-Site-Infections (17,0 % vs. 45,4 %, p = 0,00069). Schwere Komplikationen nach Clavien-Dindo > 3 wurden erst nach einer Therapiedauer von 10 - 13 Tagen nicht mehr beobachtet. Die multivariate Analyse zeigte die Ernährungstherapie als unabhängigen Faktor für ein vermindertes Auftreten von Surgical-Site-Infections (OR 0.14, 95%Cl 0.05 - 0.37, p = 0.0002) [447] (2+). Bei präoperativer Gabe für 3 Tageeines mit Hydroxymethylbutyrat (1,2 g HMB), 7 g L-Arginin und 7 g L-Glutamin angereicherten Supplements konnten im Vergleich mit einem Placebo bei Patienten mit offen operierten abdominellen Malignomen und Fortsetzung für 7 Tage postoperativ keine Unterschiede in der Rate von Wund- sowie anderer Komplikationen gezeigt werden. Auch die Körperzusammensetzung und Handgriffstärke war ohne Unterschied [448]. Aufgrund dieser Daten erfolgt die Expertenempfehlung von 10 - 14 Tagen.

Zum Vergleich einer parenteralen und enteralen Ernährung präoperativ liegt nur eine RCT vor. In einer prospektiven RCT konnte kein klarer Vorteil einer präoperativen PE gezeigt werden [248]. Die Metaanalyse von Braunschweig et al. aus randomisierten Studien [279] spricht für die PE bei mangelernährten Patienten, da eine signifikant niedrige Letalität mit Tendenz zu niedrigen Infektionsraten bei den mangelernährten Patienten mit PE beobachtet wurde (siehe auch 4.1). Heyland et al. [280] haben in ihrer Metaanalyse einen günstigen Einfluss der PE auf die Senkung der Komplikationsrate nur bei den mangelernährten Patienten gezeigt (siehe auch 4.1). Jie et al. [449] haben eine aktuelle Serie von 1.085 Patienten mit NRS vor abdominalchirurgischer Operation vorgestellt (IIa). Fünfhunderzwölf Patienten waren nach dem NRS Risikopatienten. Diese erhielten auf Grund der Erfahrung des Chirurgen ohne Kenntnisse über den NRS enterale oder parenterale Ernährung für 7 Tage präoperativ. Unterschiede der Infektionsrate und der Krankenhausverweildauer wurden bei Patienten mit einem NRS von 3 und 4 im Fall einer präoperativen Ernährung nicht gefunden. Von 120 Patienten mit einem NRS von mehr als 5 profitierten diejenigen, welche eine präoperative Ernährung erhielten: signifikant niedrigere Komplikationsrate (25,6 vs. 50,6 %, p = 0.008) und kürzere Krankenhausverweildauer (13,7 \pm 7,9 vs. 17,9 \pm 11,3 d, p = 0,018).

In einer Metaanalyse von 9 Studien, in denen insgesamt 442 Patienten mit Ösophagusresektion und 418 Patienten mit Magenresektion eingeschlossen waren, zeigten sich bei Ernährungsberatung und EE bei neoadjuvant behandelten Patienten mit Ösophaguskarzinom positive Effekte für die Stabilität des Körpergewichts und auch das Entstehen von chirurgischen Komplikationen. Die GRADE Evidenzbewertung für die Studienqualität war sehr niedrig. Die präoperative Ernährung bei den Patienten führte zu einer Verminderung der Surgical-Site-Infections, der Krankenhausverweildauer und –kosten, wobei hier die Bewertung nach GRADE aufgrund unvollständiger Angaben zum Outcome nicht möglich war [391].

Aufgrund der Daten empfiehlt die Arbeitsgruppe, die orale oder enterale Supplementierung, wann immer möglich, zu bevorzugen. Auch für den Fall einer zur Deckung des Kalorienbedarfs notwendigen PE, wie bei einer Stenose im oberen

Gastrointestinal-Trakt, sollte die orale Kalorienzufuhr z.B. durch Trinknahrung erhalten bleiben.

Zur Vermeidung eines Refeeding-Syndroms bei schwerer Mangelernährung sollte die PE nur langsam unter Kontrolle von Serumphosphat, Kalium und Magnesium mit eventuellem Substitutionsbedarf einschließlich Thiamin gesteigert werden [450] (3). Im Rahmen einer Prähabilitation beträgt die Zeitdauer der prästationären Konditionierung variabel 2 - 6 Wochen

4.2 Wann besteht die Indikation zur präoperativen Einnahme einer Trinknahrung oder enteralen Ernährung?

Empfehlung 15	
A	Bei Patienten mit Mangelernährung und/oder hohem metabolischen Risiko soll vor großen abdominellen Eingriffen eine Trinknahrung (Oral Nutritional Supplement) verabreicht werden. (BM, HE)
Modifiziert, Stand 2022	Starker Konsens 100 % Zustimmung

Empfehlung 16	
В	Patienten mit gastrointestinalem Karzinom sollte eine mit Arginin, Omega-3-Fettsäuren, Ribonukleotide angereicherte Trinknahrung präoperativ für 5 - 7 Tage angeboten werden. (BM, HE)
Modifiziert, Stand 2022	Konsens 92 % Zustimmung

Empfehlung 17	
KKP	Eine enterale Ernährung einschließlich der Einnahme von Trinknahrung sollte prähabilitativ prästationär erfolgen. (BM, HE, QL)
Modifiziert, Stand 2022	Starker Konsens 100 % Zustimmung

Kommentar zu den Empfehlungen 17-19

Es ist Konsens der Arbeitsgruppe, dass ONS eine voll bilanzierte nicht krankheitsspezifische Nährstoffzusammensetzung aufweisen, als einzige Nahrungsquelle dienen können und den Regularien an ein Lebensmittel für diätetische Zwecke der Europäischen Union (2016/128 (FSMP) entsprechen müssen [266, 451].

Die Kosteneffektivität einer ONS ist für chirurgische Patienten im Krankenhaus in einer Metaanalyse randomisierter Studien gezeigt worden [266, 359] (1+). Dennoch ist die Datenlage insgesamt etwas uneinheitlich.

Unabhängig vom Ernährungsstatus wurden präoperativ bei viszeralchirurgischen Patienten Trinknahrungen in 3 wichtigen prospektiv randomisierten Studien untersucht [230, 244, 452] (alle 1+). Obwohl 2 Studien keine signifikante Verbesserung des Outcomes zeigten, fand sich bei Smedley et al eine signifikante Verminderung der leichteren Komplikationen. Außerdem ging die postoperative Fortsetzung der Einnahme der Trinknahrung mit einem geringeren Gewichtsverlust einher [246] (1+). In einer systematischen Übersicht und Metaanalyse von 9 unter dem Aspekt der zusammengestellten präoperativen Prähabilitation kontrollierten ausschließlich Ernährungsintervention, 3 multimodal) bei Patienten mit kolorektalen Resektionen fand sich für eine Ernährungsintervention mit Trinknahrung über mindestens 7 Tage eine signifikante Verkürzung der Krankenhausverweildauer um 2 Tage, wobei die Supplementierung postoperativ fortgesetzt wurde. Während die alleinige Ernährungs-Prähabilitation die Rekonvaleszenz bezüglich der Funktionalität nach 4 und 8 Wochen nicht verbesserte, wurde dies dann durch eine multimodale Prähabilitation erreicht [267] (1++). Eine besondere Risikogruppe sind geriatrische Patienten mit Sarkopenie.

Die Datenlage ist gerade für ältere Patienten begrenzt. Daniels et al. (2020) schlossen in ihre nach AMSTAR II gut bewerteten auf ältere Patienten mit abdominalchirurgischer Tumoroperation zielende systematische Übersicht 33 Studien mit 3.962 Patienten ein. Bei gezielter präoperativer Ernährungstherapie konnte in der Metaanalyse eine Senkung der postoperativen Komplikationsraten erreicht werden. (Risikodifferenz – 0,18 (95%CI -0,26 - -0,10); p<0,001, I²=0 %) [453] (1++).

Es kann kritisch eingewandt werden, dass die meisten Patienten mit kolorektaler Resektion wegen eines Karzinoms bei insgesamt niedriger Komplikationsrate kein hohes ernährungsmedizinisches Risiko aufweisen. Dies erklärt auch das Ergebnis einer systematischen Übersicht von 5 randomisierten Studien mit 583 Patienten, in der die präoperative Einnahme einer Trinknahrung nicht zu einer signifikanten Senkung der Komplikationsrate führte [454]. Bemerkenswert ist, dass Burden et al. bei Patienten mit Operationen wegen eines kolorektalen Karzinoms eine geringere Rate von Surgical-Site-Infections in der Buzby Definition bei den Patienten mit präoperativem Gewichtsverlust beobachtet haben [452] (1+).

Für Patienten mit Gastrektomie und hohem metabolischen Risiko (SGA C) wurde randomisiert bei perioperativer Gabe einer Trinknahrung (500 mL/d) eine signifikante Senkung der Komplikationsrate insgesamt, besonders der schweren Komplikationen (Clavien-Dindo > IIIa) gezeigt [455] (1+). In einer multizentrischen australischen Beobachtungsstudie bei 200 Patienten mit Resektionen am oberen Gastrointestinaltrakt hatten Patienten mit präoperativer Einnahme einer Trinknahrung für mehr als 2 Wochen einen signifikant niedrigeren Gewichtsverlust als solche ohne $(1,2 \pm 1,8 \text{ vs. } 2.9 \pm 3,4, \text{ p} = 0.001)$. Bei den mangelernährten Patienten führte die Einnahme der Trinknahrung über mehr als 2 Wochen zu einer verminderten Krankenhausverweildauer (Regressionskoeffizient -7,3, 95%CI -14,3 - -0,3, p = 0,04). Mehr als 3 Diätberatungen führten bei den mangelernährten Patienten zu einer signifikant reduzierten Komplikationsrate (OR 0,2, 95%CI 0,1 - 0,9, p = 0,04) [456].

Da viele Patienten in der letzten Woche präoperativ ihren Energiebedarf oral nicht ausreichend decken, ist es Konsens in der Arbeitsgruppe, diese Patienten unabhängig vom Ernährungsstatus zur Einnahme von Trinknahrungen zu motivieren. Da die Compliance zur Einnahme von Trinknahrungen eingeschränkt sein kann, ist es sinnvoll, den Patienten über potenzielle Vorteile und Nutzen eingehend zu informieren (Grass et al, 2015 [457] (2+). In der Argumentation werden die Vorteile für die Heilung und die Verminderung des Risikos einer Reoperation von Patienten am besten angenommen. Dies wurde für die Einnahme eines Vitamin D- Supplements bei orthopädisch operierten Patienten gezeigt [458] (2+).

Die prästationäre Durchführung der enteralen Ernährungstherapie ggf. mit Unterstützung eines Homecare Pflegedienstes ist sowohl aus ökonomischen als auch aus infektiologischen Gründen anzustreben. Zu den immunmodulierenden Diäten s. Kommentar zu Empfehlung 12

4.3 Wann besteht die Indikation zur präoperativen parenteralen Ernährung?

Empfehlung 18	npfehlung 18	
A/0	Bei Patienten mit Mangelernährung und/oder hohem metabolischen Risiko, bei denen eine bedarfsgerechte orale /enterale Ernährung nicht möglich ist, soll eine präoperative parenterale Ernährung durchgeführt werden (A) (BM). Ein Zeitraum von 10 - 14 Tagen kann empfohlen werden (0).	
Modifiziert, Stand 2022	Starker Konsens 100 % Zustimmung	

Kommentar

Die Vorteile einer präoperativen parenteralen Ernährung für 7 - 14 Tage mit dem Ziel der Verminderung postoperativer Komplikationen sind nur evident für Patienten mit schwerer Mangelernährung (Gewichtsverlust > 15 %) [269, 459] (beide 1+) oder hohem metabolischen Risiko [447] (2+). Die Kombination einer Mangelernährung mit Nichtdurchführbarkeit einer EE findet sich zumeist bei Patienten mit Tumoren im oberen Gastrointestinaltrakt oder schwerer entzündlicher Darmerkrankung [460].

Eine große Cochrane-Analyse zur präoperativen PE hat bei Patienten mit Resektionen im Gastrointestinaltrakt eine Senkung der Komplikationsrate von 45 % auf 28 % gezeigt [383] (1++). Während die Autoren einen hohen Bias bei 3 der eingeschlossenen über 20 Jahre alten Studien diskutierten, waren 2 aktuellere Studien mit positiven Ergebnissen nicht in die Metaanalyse aufgenommen worden [269, 275] (1+).

Wenn die PE für 10 Tage präoperativ verabreicht und postoperativ 9 Tage fortgesetzt wird, kann eine Senkung der Komplikationsrate um 30 % und eine Verminderung der Letalität erreicht werden [269] (1+).

Eine Erholung der körperlichen Funktion und des Körpereiweiß kann bereits nach 7 Tagen einer PE erreicht werden. Eine weitere signifikante Verbesserung erfordert noch eine weitere Woche [461] (2+). Kontrollierte Studien zum Vergleich einer Zeitdauer von 7 und 14 Tagen liegen nicht vor. Fukuda et al (2015) haben bei Verwendung der ESPEN Definition des hohen metabolischen Risikos für Patienten nach Gastrektomie retrospektiv gezeigt, dass die schweren Komplikationen nach Clavien-Dindo IIIb erst

nach 10 - 13 Tagen Ernährungstherapie gesenkt wurden und eine Fortsetzung keine weiteren Vorteile brachte [447] (3). Bisher liegen nur retrospektive Daten für die Definition des Risikos durch computertomografisch diagnostizierte Sarkopenie vor. In einer Propensity Score Matching Analyse von jeweils 166 sarkopenen Patienten mit Gastrektomie konnten Huang et al. bei einer präoperativen PE für 3 - 7 Tage eine Senkung der postoperativen Komplikationen und der Krankenhausverweildauer nur bei gleichzeitig bestehender Hypalbuminämie (< 35 g/l) beobachten (3) [462].

Während die ASPEN Leitlinie 2009 für eine präoperative PE 7 Tage empfiehlt [463], ist es die Meinung der Arbeitsgruppe, dass bei Patienten mit hohem metabolischem Risiko die zu erwartende Verminderung des Komplikationsrisikos eine präoperative Verweildauer über 14 Tage rechtfertigt. Wann immer möglich z. B. bei neoadjuvanter Therapie sollte eine Prähabilitation für 4 - 6 Wochen angestrebt werden [267, 464].

5 Postoperative Ernährung

5.1 Welche Patienten profitieren besonders von einer frühen postoperativen Ernährung?

Empfehlung 19	
A/KKP	Eine enterale Ernährung soll innerhalb von 24 Stunden bei den Patienten begonnen werden, bei denen ein oraler Kostaufbau noch nicht möglich ist (A). Dies gilt insbesondere bei: • Patienten, bei denen die orale Kalorienzufuhr voraussichtlich in den nächsten 7 Tagen < 50 % sein wird (BM) (KKP)
	Patienten nach großen Kopf-Hals-Operationen und gastrointestinalen Resektionen wegen eines Tumors (BM) (KKP)
	 Patienten mit Polytrauma und/oder schwerem Schädel- Hirn-Trauma (BM) (KKP) Patienten mit Mangelernährung zum Zeitpunkt der
	Operation (BM) (KKP)
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

Prospektiv randomisierte Studien und eine Metaanalyse haben gezeigt, dass auch nach Gastrektomie und Ösophagusresektion eine frühe orale Ernährung sicher durchgeführt werden kann und ohne Risiko für die Anastomosenheilung ist [18, 181, 184, 465] (alle 1+). Eine randomisierte Studie bei Patienten mit Laryngektomie und primärem Pharynxverschluss zeigte, dass auch hier der Beginn der oralen Ernährung am ersten postoperativen Tag sicher möglich war [369] (1+). Nach Gastrektomie war eine nasojejunale Sonde zur Dekompression nicht erforderlich. Dies ging mit einer kürzeren Krankenhausverweildauer einher [180] (1+).

Patienten mit großen Karzinomoperationen wegen Kopf-Hals-Tumoren und Ösophagus- Magen- oder Pankreaskopfkarzinom weisen präoperativ häufig ernährungsmedizinische Defizite auf [45, 47, 48, 57, 59, 64, 70, 71, 208] und haben ein höheres Risiko für die Entwicklung septischer Komplikationen [47, 48, 57, 59, 71, 208, 212, 466] (alle 2). Postoperativ ist der orale Kostaufbau zumeist durch Schwellung oder verzögerte Magenentleerung bis zur Deckung des Kalorienbedarfs protrahiert, Die supplementierende Ernährungstherapie reduziert die Morbidität mit einem protektiven Effekt von parenteraler und enteraler Ernährung einschließlich Immunonutrition [212] (2+). In der Analyse einer großen US-Datenbank haben nur etwa 15 % der mangelernährten Patienten postoperative Trinksupplemente erhalten [467].

Traumapatienten haben auch bei normalem Ernährungsstatus ein hohes Risiko für die Entwicklung septischer Komplikationen oder eines Multiorganversagens. Eine frühe EE verfolgt das Ziel der Verminderung septischer Komplikationen [106, 229] (beide 1+) und hat bei Beginn innerhalb von 24 Stunden auch zu einer verminderten Rate an Multiorganversagen geführt [468] (1+). Bei Patienten mit Schädel-Hirn-Trauma ist die frühe EE mit signifikant weniger Infektionen und einem Trend zu verbessertem Überleben und besserer Funktionalität assoziiert. Viele dieser Studien haben jedoch methodische Schwächen.

5.2 Welche Sondennahrung sollte zur enteralen Ernährung eingesetzt werden?

Empfehlung 20	Empfehlung 20	
KKP	Bei einer enteralen Ernährung sollte eine voll bilanzierte Standardnahrung gegeben werden.	
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung	

Kommentar

Die meisten Patienten können durch eine voll bilanzierte Standardnahrung adäquat ernährt werden (s. 4.6.2 - 4.6.4). Auch bei vorhandener Jejunalsonde wie bei einer Feinnadelkatheterjejunostomie (FKJ) ist die Gabe einer speziellen Oligopeptiddiät nicht erforderlich. Die Anreicherung der Sondennahrung mit Fasern ist sicher und kann möglicherweise die Rate an Diarrhöen vermindern. Die Studienlage ist jedoch ungenügend [469]. Bei der Auswahl der Sondennahrung sollte auch die individuelle Patiententoleranz/-präferenz berücksichtigt werden. Zur Vermeidung von

Sondenverschluss durch "Clotting" und Infektionen wird auch aus Hygienegründen vom Einsatz selbst hergestellter ("home-made") Sondennahrungen abgeraten.

5.3 Welche Patienten profitieren von einer enteralen Sondennahrung?

Empfehlung 21	
В	Bei Patienten mit Mangelernährung und/oder hohem metabolischen Risiko sollte insbesondere bei Ösophagus- und Magenresektion sowie partieller Duodenopankreatektomie die intraoperative Platzierung einer nasojejunalen Sonde oder Feinnadelkatheterjejunostomie (FKJ) erfolgen (BM).
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Empfehlung 22	npfehlung 22	
Α	Eine Sondenernährung soll innerhalb von 24 Stunden begonnen werden (BM)	
Modifiziert, Stand 2017	Starker Konsens 97 % Zustimmung	

Empfehlung 23	Empfehlung 23	
KKP	Bei Patienten mit Mangelernährung und/oder metabolischem Risiko sollte die Sondenernährung mit einer niedrigen Zufuhrrate (10 - 20 mL/h) begonnen und vorsichtig unter Beobachtung der individuellen intestinalen Toleranz gesteigert werden. So kann die Zeit bis zum Erreichen des Kalorienziels individuell sehr verschieden sein und 5 bis 7 Tage dauern.	
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung	

Kommentar zu den Empfehlungen 21-23

In zahlreichen Studien sind bei Resektionen am oberen Gastrointestinaltrakt die risikoarmen Vorteile einer intraoperativ mit der Spitze aboral der Anastomose platzierten Ernährungssonde (nasojejunal oder FKJ) gezeigt worden [344, 470-475] (alle 2+).

Die offene oder sogar laparoskopische Platzierung einer FKJ [476] ist bei entsprechender Erfahrung und Anwendung mit standardisierter Technik risikoarm. Die Komplikationsrate liegt in der Literatur zwischen 1.5-6 % [373, 470, 472, 477-487] (12x 2-, 2x 2+).

Einige Autoren sehen die Routineanlage einer FKJ als Überbehandlung an und empfehlen die Anlage nur bei Hochrisikopatienten [115, 488, 489] (alle 2-). Bei Patienten mit Pankreatoduodenektomie kann ein Score zur Einschätzung des Risikos schwerer chirurgischer Komplikationen angewandt werden, in den die Pankreastextur, der Durchmesser des Ductus pancreaticus, der intraoperative Blutverlust und der ASA-Score einfließen [490] (2+). Koterazawa et al. zeigten ergänzend, dass ein schwerer Gewichtsverlust 3 Monate nach Ösophagusresektion durch eine EE nicht verhindert werden konnte, dies jedoch signifikanten Einfluss auf die Prognose mit der 5-Jahres-Überlebensrate hatte [491].

Retrospektiv haben Zhuang et al. von 716 Patienten mit Ösophagusresektion 68 mit intraoperativ platzierter Jejunostomiesonde mit 648 Patienten ohne Sonde verglichen. Die Ernährungssonde wurde nur bei den Patienten implantiert, bei denen das Risiko einer Anastomoseninsuffizienz als hoch eingeschätzt wurde. Hinsichtlich der Krankenhausaufenthaltsdauer, der Letalität und des Gesamtüberlebens wurde kein signifikanter Unterschied beobachtet. Bei den Patienten mit Sonde bestand jedoch eine Tendenz zur rascheren Heilung einer Anastomoseninsuffizienz (27,2 vs. 37,4 d, p = 0,073). Sondenkomplikationen wurden nicht beobachtet [492]. Eine Metaanalyse von 10 Studien zum Vergleich von Jejunostomie versus Nasoenteralsonde zeigte Vorteile der Jejunostomie hinsichtlich postoperativer Pneumonie, Krankenhausverweildauer und Sondendislokation, jedoch ein erhöhtes Risiko für einen Ileus [493]. Ähnliche Ergebnisse erbrachte die retrospektive Analyse von 847 Patienten mit Ösophagusresektion aus dem Nationalen Schwedischen Register für Ösophagus- und Magenkarzinome. Im Falle einer Anastomoseninsuffizienz war das Risiko, schwere Komplikationen (Clavien-Dindo ≥ IIIb) zu entwickeln, bei den Patienten mit Jejunostomie signifikant geringer. Es bestand kein erhöhtes Risiko für Jejunostomie-assoziierte Komplikationen [494]. In einer Metaanalyse von 18 Studien zeigte sich in der Gruppe ohne FKJ eine vergleichbare oder sogar geringere postoperative Komplikationsrate. Anastomoseninsuffizienz, pulmonale Komplikationen, Wundinfektionen. Ileus und lokale Infektionen an der FKJ-Austrittsstelle waren die häufigsten FKJ-Komplikationen. Die Inzidenz eines Ileus betrug etwa 6 % (95%CI 3-12 %, $I^2=70,7$ %). Mehr als 63 % der Patienten mit Ileus bedurften einer Reoperation. Die gepoolte mittlere Rate lokaler FKJ-Infektionen lag bei 7% (95%CI 6-9%, $I^2=48,1$ %). Etwa 7 % der Patienten hatten eine Sondendysfunktion (Obstruktion oder Dislokation) (95%CI 3-14 %, $I^2=81,8$ %) [495]. Zu kritisieren ist, dass weder Parameter des Ernährungsstatus noch der Körperzusammensetzung erfasst wurden.

Nach Gastrektomie wurde in einer randomisierten Studie durch Trinknahrung ein signifikant geringerer Gewichtsverlust beobachtet, was bei den Patienten mit subtotaler Resektion nicht zutraf [496] (1+). In einer weiteren randomisierten Studie wurde bei Patienten nach Gastrektomie durch Diätberatung in Kombination mit oraler Trinknahrung [497] (1+) eine signifikante Verminderung des Gewichtsverlusts mit höherem BMI und SMI. Beobachtet. Signifikant niedriger waren auch Fatigue und Appetitverlust als bei alleiniger diätetischer Beratung. Ebenfalls bei Patienten nach Gastrektomie haben Kong et al. beobachtet, dass nur ein Teil der Patienten in der zweiten und vierten Woche (26,2 % und 50,8 %) mehr als 250 mL Trinknahrung pro Tag aufnimmt [455] (1+).

Bei Patienten mit Ösophagusresektion zeigte eine Beobachtungsstudie Vorteile einer längerfristigen EE FKJ bezüglich Risikos über eine des von Anastomosenkomplikationen [474, 485] (2-, 3). Die Komplikationsrate war niedrig (1,5 %) [485] (3). In einer RCT mit 68 Patienten nach Pankreatoduodenektomie ergab sich im Vergleich einer EE über Nasojejunalsonde vs. FKJ kein signifikanter Unterschied in der Komplikationsrate (15 % vs. 13 %) [498] (1+). Die Rate von Darmverschluss und Magenentleerungsstörung war signifikant niedriger in der Gruppe mit nasojejunaler Ernährung. Katheterassoziierte Komplikationen waren häufiger in der FKJ Gruppe (35,3 % vs. 20,6 %). Nasojejunale Ernährungssonden wurden signifikant früher wieder entfernt. Die postoperative Krankenhausverweildauer war signifikant kürzer in der FKJ Gruppe [498] (1+). Bei Patienten mit Ösophagusresektion bestand in einer RCT im Vergleich zwischen früh EE über eine nasoduodenale Sonde oder FKJ kein signifikanter Unterschied in den katheterassoziierten Komplikationen [499](1+).

Zwei nach AMSTAR II bewertete Metaanalysen mit 7 bzw. 9 Studien haben bei Patienten mit partieller Pankreatoduodenektomie signifikante Vorteile der früh enteralen gegenüber einer parenteralen Ernährung bezüglich der Krankenhausverweildauer gezeigt [500, 501] (1++). In einer weiteren nach AMSTAR II bewerteten Metaanalyse von 8 randomisierten Studien mit 955 Patienten hat sich bei diesen Patienten mit enteraler supplementierender Ernährung nur bei Applikation über eine perkutane Sonde eine signifikant niedrigere Rate an infektiösen Komplikationen (OR 0,47, 95%Cl 0,25 – 0,87; p = 0,017, $I^2 = 0$ %) und eine signifikant kürzere Krankenhausverweildauer (-1,56 Tage (95%Cl -2,13 – 0,98; p < 0,001, I^2 = 0 %) ergeben [502] (1++).

Da zudem die nasojejunalen und -duodenalen Sonden im Vergleich zur FKJ ein signifikant höheres Dislokationsrisiko haben [115, 503] (beide 1++), stimmt die Arbeitsgruppe Markides et al. zu, dass bei Patienten mit Mangelernährung oder hohem metabolischen Risiko der FKJ der Vorzug gegeben werden sollte. Es ist sinnvoll, bei diesen Patienten die enterale Sonde bei der Entlassung zur poststationären Fortsetzung der EE zu belassen.

Die Toleranz der Sondennahrung muss in jedem Fall und besonders bei eingeschränkter gastrointestinaler Passage (z. B. beim Intensivpatienten) streng beobachtet werden [250] (1+). Eine zu rasche Steigerung der enteralen Zufuhr geht mit einer erhöhten Rate gastrointestinaler Intoleranz einher [504]. So sollte eingeplant werden, dass der Nahrungsaufbau bis zur enteralen Deckung des Kalorienbedarfs 5 - 7 Tage oder länger dauern kann [220, 221, 473, 475] (3x 1+, 1x 2+). Eventuell sollte eine supplementierende parenterale Ernährung erfolgen (s. 4.1.1). In etlichen Kasuistiken ist bei zu rascher Steigerung der EE die Entwicklung einer ischämischen Darmnekrose mit hohem Risiko der Letalität berichtet worden [115, 505-511] (3).

Empfehlung 24	mpfehlung 24	
KKP	Wenn bei Patienten mit Mangelernährung und/oder metabolischem Risiko eine Sondenernährung für mehr als 4 Wochen erforderlich ist, wie z.B. bei einem schweren Hirn-Trauma, sollte die Platzierung einer perkutanen endoskopischen Gastrostomiesonde (PEG/PEJ) erfolgen.	
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung	

Kommentar

Eine perkutane endoskopische Gastrostomie (PEG) sollte bei Patienten mit Indikation zur längerfristigen EE erfolgen, vor allem, wenn eine Laparotomie nicht indiziert ist wie bei schwerem Schädel-Hirn-Trauma oder nach neurochirurgischen Eingriffen. Bei Patienten mit stenosierendem Ösophaguskarzinom und geplanter neoadjuvanter Therapie sollte die PEG-Anlage vorher mit dem Chirurgen abgestimmt werden. Die Leitlinie zur Platzierung einer PEG [512] empfiehlt die Anlage ab einer Ernährungsdauer von 2 - 3 Wochen.

5.4 Welchen Patienten nutzt eine enterale Ernährung nach der Entlassung aus dem Krankenhaus?

Empfehlung 25	
В	Bei Patienten, die perioperativ einer Ernährungstherapie bedurften, sollte die regelmäßige Erfassung des
	Ernährungsstatus während des Krankenhausaufenthaltes mit poststationärer Fortsetzung einschließlich Ernährungsberatung sowie ggf. oraler/enterale Supplementierung erfolgen. (BM)
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Kommentar

In einer prospektiven Studie von 50 Patienten mit großer abdominaler Operation wurden Eiweiß- und Energieaufnahme in der ersten Woche postoperativ erfasst. Bei der Mehrheit der Patienten waren Energie- (82 %) und Eiweißaufnahme (90 %) unzureichend Bei den Patienten, die das Proteinziel nicht erreichten, wurden zudem mehr Clavien-Dindo III Komplikationen beobachtet [513].

10 % Eine prospektive Kohortenstudie hat nur bei der Patienten mit Ösophagusresektion (n = 96), die eine Rekonstruktion als Magenhochzug erhielten, eine allgemeinen Empfehlungen folgende ausreichende den Zufuhr Mikronährstoffen gezeigt [514]. Bei der Einnahme von oraler Trinknahrung ist die Compliance häufig eingeschränkt [457, 515]. Mögliche Ursachen sind Geschmack, der Verlust an Appetit, Völlegefühl, eine verminderte enterale Toleranz mit Dumping-Syndrom, Meteorismus und Diarrhö.

Die Zahl von ernährungsbezogenen Beschwerden war jedoch kein unabhängiger Risikofaktor für das Vorliegen einer suboptimalen Nahrungszufuhr [514].

Eine systematische Übersicht von 18 Studien hat bei Patienten nach Ösophagusresektion einen postoperativen Gewichtsverlust von 5 – 12 % innerhalb von 6 Monaten gezeigt. Mehr als die Hälfte der Patienten verlor > 10 % an Körpergewicht [516].

So muss beachtet werden, dass diese Patienten auch postoperativ metabolische Risikopatienten sind und damit Verlaufskontrollen des Ernährungsstatus (Minimum: BMI) einschließlich der Dokumentation der Menge an oraler Nahrungszufuhr zu empfehlen sind. Die Compliance bei der Einnahme von Trinknahrungen ist häufig eingeschränkt [457].

Eine Verlaufskontrolle des Ernährungsstatus kann mit der Beobachtung des BMI leicht durchgeführt werden. Jedoch ist der BMI nicht sensitiv für Unterschiede in der Körperzusammensetzung. Die Bioelektrische Impedanzanalyse (BIA) ist eine leicht durchführbare nicht-invasive Methode, welche auch bei ambulanten Patienten ohne Belastung durchgeführt werden kann. Der intraindividuelle Verlauf kann in einem Drei-Kompartiment-Model (Extrazellulärmasse, Körperzellmasse und Fettmasse) dargestellt und beobachtet werden.

Eine Ernährungsberatung wird dringend empfohlen und von den meisten Patienten sehr gerne angenommen. In 6 RCT wurde eine postoperative und poststationäre Gabe von oraler Trinknahrung untersucht [219, 226, 228, 230, 244, 247]. Die verfügbaren Daten lassen die Empfehlung einer Routinegabe nicht zu, zeigen aber einen Nutzen bei der Erholung des Ernährungsstatus, eine Senkung der Komplikationsrate und eine Besserung des allgemeinen Wohlbefindens sowie der Lebensqualität bei den Patienten, die ihren Kalorienbedarf in der häuslichen Umgebung nicht durch die

normale Ernährung decken können. Dies gilt ganz besonders für Patienten nach großen gastrointestinalen Eingriffen wie einer Gastrektomie [517], für geriatrische Patienten mit Frakturen [39, 55, 225] aber auch nach kolorektalen Resektionen (Ulander et al. 1998). Bei Einnahme einer Trinknahrung war die Energieaufnahme jeweils in der Interventionsgruppe signifikant höher als in der Kontrollgruppe [55, 247]. Bei geriatrischen Patienten war jedoch die Compliance der Einnahme von Trinknahrung gering und dies unabhängig vom Ernährungsstatus. Dennoch war die Energieaufnahme signifikant höher in der Interventionsgruppe als in der Kontrollgruppe [52, 249] (2+).

Empfehlung 26	npfehlung 26	
KKP	Eine intraoperativ platzierte FKJ kann zum Zeitpunkt der Entlassung vorübergehend in Abhängigkeit vom Gewichtsverlauf belassen werden.	
Neu, Stand 2022	Starker Konsens 100 % Zustimmung	

Kommentar

Sofern bei der Operation eine FKJ implantiert wurde, kann es von Vorteil sein, diese nicht bereits bei der Entlassung aus dem Krankenhaus zu entfernen. Wenn notwendig, kann eine supplementierende EE über die FKJ z. B. mit 500 - 1000 kcal/d über Nacht über eine längere Periode erfolgen. Eine entsprechende Unterweisung des Patienten und seiner Familie ermöglicht in den meisten Fällen die Versorgung ohne Einbindung eines Pflegedienstes. In einer randomisierten Studie zur heimenteralen Ernährung ist die Sicherheit der FKJ gezeigt worden. Ein besserer Erhalt des Körpergewichts, der Muskel- und Fettkompartiments konnte beobachtet werden [518] (1-). So kann bei dem unvermeidlichen Gewichtsverlust zumindest eine Verminderung zum Erhalt der Körperzusammensetzung erreicht werden [519].

Insbesondere Patienten mit postoperativen Komplikationen verlieren Körpergewicht und haben ein hohes Risiko zur weiteren Verschlechterung des Ernährungsstatus. Dies ist in der retrospektiven Analyse von 146 Patienten einer prospektiven Studie gezeigt worden [512, 520] (2-).

Außerdem wird bei den meisten Patienten nach großen gastrointestinalen Eingriffen und Pankreasresektionen gemessen am Kalorienbedarf die orale Kalorienzufuhr für eine längere Periode inadäquat sein. Dies bedeutet das potenzielle Risiko für eine postoperative Mangelernährung. In einer Beobachtungsstudie ist bei Patienten mit kompliziertem Verlauf und Intensivbehandlung nach der Extubation eine spontane Kalorienaufnahme nicht höher als 700 kcal/d gezeigt worden. Dies ist in einer Periode mit einer empfohlenen Energiezufuhr von 1,2 - 1,5 Mal·dem Ruheenergiebedarf metabolisch völlig unzureichend und macht deutlich, wie wichtig die Beobachtung der spontanen oralen Nahrungsaufnahme in der Phase der Rekonvaleszenz ist [55] (IIa).

Nach subtotaler (n = 110) oder totaler Gastrektomie (n = 58) zeigte sich in einer retrospektiven Analyse eine Abnahme des BMI nach einem Monat, 6, 12 und 24 Monaten von 7,6 %, 11,7 %, 11,5 % und 11,1 % [521].

Nach Ösophagusresektion kann bei 30 % der Patienten ein Gewichtsverlust von mehr als 15 % innerhalb von 6 Monaten erwartet werden [522] (IIb). Eine Metaanalyse von 18 Studien ergab postoperativ einen Gewichtsverlust von 5 – 12 % nach 6 Monaten. Mehr als die Hälfte der Patienten verlor > 10 % des Körpergewichts nach 12 Monaten [512, 516] (1-). Dies muss als bariatrischer Effekt dieser Operationen aufgefasst werden.

Im Vergleich mit einer Kontrollgruppe haben Chen et al. bei älteren Patienten nach Ösophagusresektion signifikante Vorteile für eine heimenterale Ernährung über 8 Wochen bezüglich BMI, Patient Generated SGA (PG-SGA) Score, Serumalbumin und Immunparameter gezeigt [523].

Eigene Ergebnisse bei Patienten mit Ösophagus- und Magenresektion einschließlich partieller Pankreatoduodenektomie zeigen auch bei konsequenter postoperativer Fortsetzung der Ernährungstherapie über FKJ nach 6 Monaten bei 40 % der Patienten einen Gewichtsverlust > 10 %. Eine Stabilisierung des Körpergewichts wurde bei fortgesetzter enteraler Supplementierung nach 4 - 6 Monaten erreicht. [524]. Vor der Entfernung einer FKJ sollte ein mehrwöchiger Auslassversuch unter Supplementierung mit ONS erfolgen. Im Fall einer Verschlechterung kann die EE wieder aufgenommen werden.

Heimenteral versus orale Trinknahrung

In einer aktuellen Metaanalyse von 15 RCT mit 1.059 Patienten mit Resektionen am oberen Gastrointestinaltrakt wurden heimenterale Ernährung und ONS verglichen [525]. Bei der heimenteralen Ernährung wurde im Vergleich zur Kontrolle ohne Supplementierung ein signifikant geringerer Gewichtsverlust (-3,95 vs. -5,82 kg; SMD 1,98 kg; 95%Cl 1,24 – 2,73, l^2 = 71 %) mit Verminderung der Entwicklung einer Mangelernährung beobachtet (RR = 0,54; p < 0,01). Keine signifikanten Unterschiede wurden hingegen im Vergleich zwischen den Patienten mit oraler Supplementierung und der Kontrollgruppe ohne Supplementierung gefunden. In der enteral ernährten Gruppe fielen auch die Dimensionen der Lebensqualität Körperliche Funktion und Fatigue signifikant besser aus.

In einer randomisierten Studie konnte bei 353 Patienten mit NRS ≥ 3, die nach Gastrektomie in der Interventionsgruppe eine Ernährungsberatung in Kombination mit ONS erhielten, eine signifikante Verminderung des Gewichtsverlusts bei höherem BMI und SMI beobachtet werden. Während kein Unterschied in der 90-Tage-Wiederaufnahmerate bestand, waren Fatigue und Appetitverlust weniger häufig als bei den Patienten mit ausschließlicher Ernährungsberatung [497].

In einer multizentrischen randomisierten Studie von 1.003 Patienten nach Gastrektomie wurden die Auswirkungen der Einnahme einer Trinknahrung mit 400 kcal/d auf den Gewichtsverlust nach einem Jahr mit Kontrollpatienten verglichen. Insgesamt war der Gewichtsverlust in der Interventionsgruppe nach 3 Monaten signifikant geringer. Dies glich sich im weiteren Verlauf an und war nach einem Jahr ohne signifikanten Unterschied. In der ONS Gruppe nahmen nur 50,4 % der Patienten mehr als 200 kcal/d ein (im Mittel 301 mL), hatten aber nach einem Jahr einen signifikant niedrigeren Verlust des Körpergewichts $(8,2\pm7,2\,\%)$ als die Kontrollen (p = 0.0204) [526].

Weitere Daten aus kontrollierten Studien sind dringend erforderlich, um die langfristigen Vorteile der poststationären Ernährungstherapie zu untersuchen. Aufgrund der vorliegenden Daten erscheint eine randomisierte Studie ethisch nur zum Vergleich einer enteralen mit einer oralen Supplementierung vertretbar.

Für die Verlaufskontrollen kann die Evaluation durch den Patienten selbst mit einem validierten Instrument wie dem PG-SGA hilfreich sein [527]. Zukünftig werden auch Apps und virtuelles Coaching an Bedeutung gewinnen [528].

6 Bariatrische Chirurgie

Empfehlung 27	<u>Empfehlung 27</u>	
Α	Nach bariatrischer Chirurgie soll ein früher oraler Kostaufbau durchgeführt werden. (BM)	
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung	

Kommentar

Nach Roux-Y-Bypass basiert der postoperative Gewichtsverlust nicht auf einer Erhöhung des Energieverbrauchs, sondern neben dem mechanisch restriktiven Effekt auf der Einschränkung des Appetits durch die veränderte Sekretion gastrointestinaler Hormone [529]. Hierbei sind auch Mikrobiom und Gallefluss von Bedeutung.

Die Evidenz bezüglich der Wirksamkeit einer hohen Proteinzufuhr von mindestens 60 g/d nach einer bariatrischen Operation ist bislang inkonsistent. Während erste Untersuchungen zeigten, dass hierdurch sogenannte fettfreie Körpermasse geschützt wird [530, 531], konnte eine 12 Studien inkludierende systematische quantitative Metaanalyse diesen Effekt nicht als signifikant bestätigen [532]. In einer prospektiven Kohortenstudie bei 77 Patienten mit Sleeve-Gastrektomie war eine Proteinzufuhr ≥ 60 g/d nach 6 Monaten mit einem signifikant niedrigeren Verlust an fettfreier Masse bei Frauen assoziiert (8,9 \pm 6,5 % versus 12,4 \pm 4,1 %; p = 0,039) und dies konnte jedoch nicht signifikant auch bei Männern beobachtet werden (9,5 ± 5,5 % versus 13,4 ± 6,0 %; p = 0,068) [533]. Einige Studien weisen auf weitere positive Aspekte einer hohen Proteinaufnahme, wie eine höhere Gewichtsreduktion und eine verbesserte Wundheilung, hin [531, 534]. Eine verbesserte Gewichtsreduktion konnte auch in einer Untersuchung, die eine proteinreiche Diät von 1,34 g/kg Körpergewicht mit einer Diät mit Standardproteinzufuhr von 0,8 g/kg Körpergewicht bei konservativer Gewichtsabnahme verglich, gezeigt werden - jedoch nur wenn die Patienten eine hohe Therapieadhärenz aufwiesen [535]. Ferner wird basierend auf der Beobachtung von Patienten mit diätetischer Gewichtsreduktion eine bessere subjektive Sättigung und Vermeidung von Mangelernährung angenommen, obwohl dieses Gebiet Gegenstand aktueller Forschung ist [536]. Auch wenn diese Studien wertvolle Hinweise liefern, fehlt es insgesamt in Bezug auf die Empfehlungen zur postbariatrischen Proteinzufuhr noch immer an validen Forschungsergebnissen.

In jedem Fall scheint eine proteinreiche hypokalorische Diät mindestens so gut zu sein wie eine Diät mit nicht erhöhter Proteinzufuhr. Um Prozesse in der Nachsorge der bariatrischen Chirurgie zu erleichtern und eine Verbesserung der Compliance zu erzielen, kann die Empfehlung einer hohen Proteinaufnahme von mindestens 60 g/d ausgesprochen werden.

Um die klinischen Ergebnisse bei adipösen Patienten im Krankenhaus zu verbessern, empfiehlt die ASPEN eine proteinreiche Ernährung mit 1,2 g Eiweiß/kg tatsächlichem Körpergewicht oder 2 - 2,5 g Eiweiß/kg idealem Körpergewicht, obwohl auch der Evidenzgrad dieser Empfehlung niedrig ist [537]. Auch wenn valide Evidenz noch aussteht, kann bei adipösen Patienten nach einer bariatrischen Operation eine an das Körpergewicht oder das ideale Körpergewicht angepasste proteinreiche Ernährung empfohlen werden.

Erste Studien verweisen zudem auf eine Verbesserung verschiedener Aspekte einer nichtalkoholischen Fettlebererkrankung nach einer zweiwöchigen präoperativen kalorienarmen Diät bei adipösen Patienten, die sich einer bariatrischen Operation unterziehen [538, 539]. Aber auch um den Weg für die Umsetzung postoperativer Ernährungsempfehlungen zu ebnen, kann eine präoperative proteinreiche und kalorienarme Ernährung als Vorbereitung für bariatrische Verfahren angedacht werden. Bei Patienten mit Nierenfunktionsstörung müssen Einschränkungen einer proteinreichen Ernährung berücksichtigt werden [540].

Übergewichtige Menschen haben bereits vor einer bariatrischen Operation ein hohes Risiko für malnutritionsbedingten Mikronährstoffmangel [541, 542]. Auch in diesem Zusammenhang sind geschlechtsspezifische Aspekte zu berücksichtigen [543]. Da bariatrische Operationen - insbesondere Verfahren mit einer hohen malabsorptiven Komponente - diese Situation eher verschlechtern als verbessern, wird eine ausreichende Ergänzung der Mikronährstoffe empfohlen [544]. Die postoperative Verminderung der Knochendichte und der Magermasse kann durch präoperative Vitamin D Gabe ("Loading") mit postoperativer Vitamin D- und Kalzium-Gabe und BMIadjustierter Proteinzufuhr in Verbindung mit körperlicher Aktivität (Gymnastik) zumindest abgeschwächt werden [545]. lm Falle eines längeren Krankenhausaufenthaltes nach einer bariatrischen Operation kann eine Mikronährstoff-Supplementierung bereits in der klinischen Behandlung in Betracht gezogen werden. In Anbetracht neuer Forschungsergebnisse die zeigen, dass

Ernährungsempfehlungen wie die Substitution von Mikronährstoffen und der Proteinzufuhr in der Langzeitbeobachtung nach einer bariatrischen Operation nur unzureichend eingehalten werden, erscheinen diese Empfehlungen umso wichtiger [546].

Eine hypokalorische Ernährung ist Teil der Behandlungsstrategie, sodass bei unkompliziertem Verlauf kein Bedarf zur parenteralen Supplementierung besteht. So empfehlen auch die Allied Health Nutritional Guidelines for the Surgical Weight Loss keine routinemäßige parenterale Ernährung [547]. Bei diesen Patienten ist ein funktionierender Gastrointestinaltrakt zu erwarten, was gegen die möglichen Komplikationen eines zentralen Venenkatheters abzuwägen ist [548].

Empfehlung 28							
ККР	Bei Patienten mit bariatrischer Chirurgie und Komplikationen mit Indikation zur Relaparoskopie/-tomie kann der Einsatz einer nasojejunalen Sonde oder Feinnadelkatheterjejunostomie erwogen werden.						
Geprüft, Stand 2017	Starker Konsens 100 % Zustimmung						

Empfehlung 29								
0	Für alle weiteren Fragestellungen können die Empfehlungen für Patienten mit großen viszeralchirurgischen Eingriffen zur Anwendung kommen. (BM)							
Geprüft, Stand 2022 Starker Konsens 100 % Zustimmung								

Kommentar zu den Empfehlungen 28 und 29

Selbst bei schweren Komplikationen sind die Vorteile einer EE im Hinblick auf das Outcome (Letalität) und das Kosten-Nutzen-Verhältnis zu berücksichtigen [549-551] (alle 2+). Für die EE können eine intraoperativ vorsichtig platzierte nasojejunale Sonde, eine FKJ oder sogar eine Gastrostomie im Restmagen zum Einsatz kommen [549-

552] (alle 2+). Hier ist das Risiko einer Leckage beim morbid adipösen Patienten jedoch erhöht.

7 Organtransplantation

7.1 Wann ist eine enterale Ernährung vor Organtransplantation notwendig?

Empfehlung 30							
Α	Bei Mangelernährung soll vor Organtransplantation eine Optimierung des Ernährungsstatus erfolgen. (BM)						
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung						

Empfehlung 31	
В	Bei manifester Mangelernährung sollten zunächst ein strukturierter Ernährungsplan und erst danach die Supplementierung mit Trinknahrung oder eine enterale Sondenernährung erfolgen. (BM)
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung

Empfehlung 32									
KKP	Bei Verlaufskontrollen von Patienten auf der								
	Transplantationswarteliste sollte auch eine Erfassung des Ernährungsstatus durchgeführt werden.								
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung								

Kommentar zu den Empfehlungen 30-32

Eine Mangelernährung bestimmt den Verlauf einer chronischen Organinsuffizienz. Die Prävalenz bei Patienten auf der Warteliste zur Lebertransplantation kann zwischen 17,2 % und 57,7 % betragen [553] (2-). Dies gilt besonders für den funktionellen Status (siehe die entsprechenden organspezifischen Leitlinien). Ernährungsmedizinische Parameter korrelieren mit dem Outcome nach Transplantation [74, 75, 78, 80, 554]. Während der oft langen präoperativen Wartezeit muss diese Phase zur ernährungsmedizinischen Mitbehandlung genutzt werden. Vier Interventionsstudien (2 randomisiert) zur präoperativen Ernährung von Patienten auf der Warteliste für eine Organtransplantation liegen vor [555-558]. Eine Verbesserung der ernährungsmedizinischen Parameter ist in allen 4 Studien gezeigt worden. Im Fall

einer ernährungsmedizinischen Intervention konnte die Beziehung zwischen Letalität und Ernährungsstatus aufgehoben werden [80, 553]. In einer randomisierten Studie waren die vor der Transplantation verbesserten Parameter des Ernährungsstatus ohne Einfluss auf Outcome und Letalität [556].

Erste Ergebnisse zum Einsatz einer immunmodulierenden Diät bei Patienten auf der Warteliste für eine Lebertransplantation und für 5 Tage nach der Transplantation zeigten günstige Auswirkungen auf das Gesamtkörperprotein und eine mögliche Verminderung der Rate infektiöser Komplikationen [558].

Zur metabolischen Konditionierung des Lebendspenders und Empfängers liegen keine Daten vor. Experimentelle Ergebnisse [559], die einen Einfluss des Ernährungsstatus auf den Leberischämieperfusionsschaden zeigen, könnten das Konzept einer metabolischen Konditionierung durch zusätzliche präoperative Glukosedrinks bestätigen.

7.2 Wann ist eine medizinische Ernährung nach Organtransplantation indiziert?

Empfehlung 33								
B Nach Organtransplantationen sollte ein früher oraler Kostauflbzw. eine enterale Ernährung gemäß individueller Tolerainnerhalb von 24 Stunden erfolgen. (BM)								
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung							

Empfehlung 34								
0	Nach Dünndarmtransplantationen kann frühzeitig mit der oralen/enteralen Zufuhr begonnen werden, wobei innerhalb der ersten Woche auf eine vorsichtige Steigerung zu achten ist. (BM)							
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung							

Empfehlung 35							
В	Wenn vor oder nach Organtransplantation die enterale Ernährung nicht ausreicht, sollte eine supplementierende parenterale Ernährung erfolgen. (BM)						
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung						

Empfehlung 36								
KKP	Im Rahmen der Verlaufskontrolle nach Transplantation soll der							
	Ernährungsstatus mitbeobachtet werden. Für diese Patienten							
	soll eine Ernährungsberatung angeboten werden.							
Modifiziert, Stand 2017	Starker Konsens 100 % Zustimmung							

Kommentar zu den Empfehlungen 33-45

Insgesamt ist die Datenlage für spezifische Empfehlungen nach Lebertransplantation unbefriedigend. Dies hat eine Cochrane Analyse von Langer et al. [560] anhand von 13 prospektiven RCT oder solchen mit Cross-over-Design gezeigt. Es besteht Konsens, dass eine frühe orale/enterale Nahrungszufuhr auch bei Transplantationspatienten möglich ist [561, 562].

Eine speziell mit verzweigtkettigen Aminosäuren (BCAA) angereicherte orale Diät wird gut akzeptiert und kann eine bessere orale Nahrungsaufnahme bewirken (2-) [563]. Eine Metaanalyse von 9 RCT und 10 Kohortenstudien mit 1.300 Patienten zum Vergleich enteraler vs. parenteraler Ernährung nach Lebertransplantation hat enteral eine signifikante Verminderung der postoperativen Infektionsraten sowie der Intensivund Krankenhausverweildauer mit günstigen Auswirkungen auf Ernährungsstatus und Leberfunktion gezeigt [564]. Im Falle einer Mangelernährung sollte diese entsprechend der allgemeinen Empfehlungen frühzeitig mit einer PE kombiniert werden [564-567].

Die Absorption und Blutspiegel von Tacrolimus werden durch eine EE nicht beeinflusst [568]. Nach Lebertransplantation ist eine enterale und eine parenterale Ernährung gleichwertig [276]. Zusätzlich ist zu einer EE eine Reduktion der Inzidenz für virale Infektionen gezeigt worden [569].

Verglichen mit einer Standardsondennahrung und der Kombination mit einer selektiven Dünndarmdekontamination hat der Einsatz von Synbiotika (probiotische Bakterien, wie *Lactobacillus plantarum*) und Präbiotika zu einer signifikanten Reduktion der Rate an Infektionen nach Lebertransplantationen geführt [422]. Im Vergleich mit einem lediglich Präbiotika enthaltenden Supplement konnte ebenfalls bei Einsatz von Synbiotika eine signifikante Senkung der bakteriellen Infektionsrate gezeigt werden [417]. Eine Metaanalyse von 6 Studien mit 345 Patienten zeigte für die Gabe der Synbiotika eine Dauer von 7,14 Tagen. In der Interventionsgruppe signifikant niedriger war die Infektionsrate (RR = 0,29; 95%CI, 0,14 - 0,60; p_H = 0,066, I^2 = 51,7 %) und das Auftreten eines Harnweginfektes (RR = 0,14; 95%CI, 0,04 - 0,47, p = 0,724, I^2 = 0 %). Probiotika senkten signifikant die Dauer des Krankenhausaufenthalts (WMD = -1,37; 95%CI, -1,92 - 0,82; p = 0,506; I^2 = 0 %) und antimikrobiellen Therapie (WMD = -4,31; 95%CI, -5,41 - 3,22; p = 0,019; I^2 = 69,8 %) [570].

Die Implantation einer FKJ ist auch nach Lebertransplantation sicher möglich [571]. Eine EE ist auch bei erhöhter intestinaler Sekretion nach Dünndarmtransplantation möglich und kann mit niedrigen Zufuhrraten in der ersten postoperativen Woche durchgeführt werden [572-575].

Bei der Frage der Lipidzufuhr, haben eine MCT/LCT-Emulsion mit reinen LCT-Emulsionen günstige Auswirkungen auf die Regeneration der Funktion des retikuloendothelialen Systems gezeigt [576]. Der Stoffwechsel beider Lipidemulsionen war ohne Unterschied [577]. Im Vergleich mit einer normalen oralen Krankenhauskost sowie einer parenteralen Supplementierung mit 20 %-iger MCT-/LCT-Emulsion hat sich der Einsatz einer Omega-3-Fischöl angereicherten Lipidemulsion für 7 Tage nach Lebertransplantation günstig auf das Ausmaß des Ischämieschadens, die Rate infektiöser Komplikationen und die postoperative Verweildauer ausgewirkt [578].

Die Erfahrungen mit dem Einsatz von enteralen immunmodulierenden Nahrungen sind noch immer limitiert. Die ersten kontrollierten Daten haben nach Lebertransplantation gezeigt, dass ungünstige Effekte auf die Immunsuppression wahrscheinlich nicht auftreten [579]. In der daraufhin durchgeführten RCT konnten jedoch auch keine Vorteile gezeigt werden [580] (1+).

Eine andere kontrollierte Studie ist aufgrund ungenügender Rekrutierung vorzeitig abgebrochen worden [581]. Die Bedeutung einer Präkonditionierung des

Organspenders und des Spenderorgans durch Hochdosisgabe von Arginin und dem Ziel einer Bildung von Stickstoffmonoxid und einer vermehrten Bildung von Glutamin und Glutathion ist immer noch in der Diskussion [582, 583]. Auch die Beeinflussung des Ischämie-Reperfusionsschadens nach Lebertransplantation oder Leberoperationen im Allgemeinen durch die Aminosäure Glycin über die Kupferschen Sternzellen ist auch weiterhin in Diskussion [584, 585]. Es liegen keine klinischen Studien zum Einsatz von Glutamin in der parenteralen Immunonutrition vor. Die Daten aus Tierexperimenten zur PE mit Glutamin nach Dünndarmtransplantation haben günstige trophische Effekte mit verminderter Mukosapermeabilität und bakterieller Translokation gezeigt [586]. Aus diesen Gründen können derzeit keine Empfehlungen zum Einsatz einer Immunonutrition gegeben werden.

Malnutrition, Ischämie-Reperfusion und Immunosuppression beeinflussen auch das Mikrobiom nach Transplantation. Es kommt zu einer Veränderung der Mikrobiomdiversität, mit unterschiedlichen Bakterienzusammensetzungen des Stuhls bei Abstoßung und Infektion. Diese Mikrobiomveränderungen sind prognostisch für den Krankheitsverlauf nach Organtransplantation [587, 588]. Erste Studien untersuchen den Einfluss einer EE auf das Mikrobiom nach hämatologischer allogener Transplantation [589]. Nach der Transplantation kommt es durch Normalisierung des Stoffwechsels, des Lebensstils und der körperlichen Aktivität primär zur Zunahme der Fett- und weniger der Muskelmasse [590]. So bedürfen die Patienten auch in dieser Phase ernährungsmedizinische Verlaufskontrollen und diätetische Beratung.

Für Lebendspender und Lebendspender-Empfänger können keine anderen Empfehlungen gegeben werden als für Patienten nach großen abdominalchirurgischen Eingriffen.

8 Besondere Aspekte in der Kinderchirurgie

Empfehlung 37							
0	Ein frühzeitiger postoperativer oraler Kostaufbau kann bei Kindern und Jugendlichen erfolgen. (BM, QL)						
Modifiziert, Stand 2014	Starker Konsens 100 % Zustimmung						

Kommentar

Bei neugeborenen und frühgeborenen Kindern resultiert die frühzeitige EE in einer verbesserten Entwicklung der Immunkompetenz und im niedrigeren Risiko für septische Komplikationen [591]. Dies gilt auch nach intestinalen Anastomosen bei Chirurgie wegen kongenitaler Malformationen (1+) [592]. In einer Metaanalyse von 4 randomisierten Studien hat eine frühenterale Ernährung vor dem dritten Tag auch nach Darmanastomosen nicht zu einer erhöhten Rate von Anastomoseninsuffizienzen geführt. Bei frühenteraler Ernährung fanden sich eine signifikant verkürzte Krankenhausverweildauer (MD = -3.38; 95%CI -4.29 - -2.48; p < 0.00001, I² = 36 %), ein früheres Eintreten der Darmtätigkeit (MD = -0.57; 95%CI -0.79 - -0.35; p < 0.00001, $I^2 = 0$ %), niedrigere Rate chirurgischer Infektionen (OR = 0,27; 95%CI 0,08-0,90; p = 0.03, $I^2 = 0$ %), und schnellere Toleranz einer vollen EE (MD = -2.00; 95%CI -3.01 - -2,79; p < 0,00001; 95%CI 0,10-1,31; p = 0,12, I² = 41%). Postoperatives Erbrechen und abdominelle Distension traten nicht häufiger auf (OR = 0,63; 95%CI 0,13-3,16; p = 0,58, I² = 60 %) [593]. Eine randomisierte Studie hat bei Kindern mit Herzoperation wegen eines kongenitalen Herzfehlers gezeigt, dass eine hochenergetische Ernährung mit einem verbesserten Wachstum, einem kürzeren Aufenthalt auf der Intensivstation, einer kürzeren Beatmungszeit und einer verminderten postoperativen Infektionsrate assoziiert war [594]:

Zahlreiche Studien haben gezeigt, dass der Energiebedarf bei Neugeborenen nach größeren chirurgischen Eingriffen um 20 % steigt und sich danach wieder innerhalb von 12 bis 24 Stunden normalisiert [595]. Postoperativ wird bei Kindern eine Wasserretention während der ersten 24 Stunden beobachtet, einhergehend mit erhöhten Spiegeln des antidiuretischen Hormons (ADH). Aus diesem Grund sollte die Flüssigkeitszufuhr eingeschränkt werden und auf die Natriumzufuhr besonders geachtet werden [596, 597].

Ein Kurzdarmsyndrom kann bei Kindern durch genetischen/angeborenen oder erworbenen Verlust an Dünndarmresorptionsfläche entstehen. Während einer langzeitparenteralen Ernährung bestimmen assoziierte Probleme und Komplikationen, wie Einschränkung der Leberfunktion, Thrombose, Embolie und Sepsis die Prognose [598].

Eine Metaanalyse von 5 RCT und 3 qualitativ guten prospektiven Kohortenstudien zeigte eine günstige Auswirkung einer Supplementierung der PE mit Omega-3-Fettsäuren auf biochemische Parameter der mit dem Kurzdarm assoziierten Lebererkrankungen (IFALD). Diese hatte jedoch keine Auswirkungen auf die Letalität [599] (1+). So kann sich derzeit der Einsatz einer mit Omega-3-Fettsäuren angereicherten PE bei Kindern nicht auf eindeutige Daten stützen.

Nutritional Scores

Validierte Nutritional Scores sind in der Kindermedizin selten. Sie unterscheiden sich von den in der Erwachsenenmedizin geltenden Scores, da Kinder einen anderen Metabolismus aufweisen und zusätzliche Anforderungen an eine ausgewogene Ernährung haben. Bei hospitalisierten Kindern werden unterschiedliche Risk Scores verwendet. Drei der meist verwendeten Scores sind das Screening Tool for Risk of Impaired Nutritional Status and Growth (STRONGkids), Pediatric Yorkhill Malnutrition Score (PYMS) und das Screening Tool for the Assessment for Malnutrition in Pediatrics (STAMP) [600]. Das STRONGkids Screening Tool wurde basierend auf den ESPEN guidelines entwickelt [87]. Eine Validationsstudie aus dem Jahr 2013, welche in Belgien durchgeführt wurde, erachtet den Score als authentisch und einfach in der Handhabung [601]. Der PYMS wurde am Royal Hospital for Sick Children in Yorkhill, Glasgow entwickelt. Er basiert ebenfalls auf den ESPEN Guidelines. Im Vergleich zu STAMP sind falsch-positive Ergebnisse beim PYMS seltener [602]. Der Vorteil des STAMP liegt darin, dass er auch ohne Expertise in Ernährungswissenschaften und mit minimalem Training in den klinischen Alltag eingebaut werden kann [603]. Eine Studie aus dem Jahr 2016 evaluierte alle 3 genannten Screening Tools. In Anbetracht der schlechten Identifikation von subnormalen anthropometrischen Maßen, raten die Autoren von der Verwendung der Scores ab [604]. Demgegenüber wird die klinische Anwendbarkeit vom STRONGkids Score und vom STAMP Score von anderen Autoren als 'gut' taxiert [605]. Zusammengefasst hat sich bisher kein validierter und allseits anerkannter Ernährungsscore in der Pädiatrie etabliert.

Carboloading

Präoperatives Verabreichen von kohlenhydratreichen Nahrungsmitteln wird vereinzelt auch bei Kindern beschrieben. In einer einzelnen Studie wurden reduzierte Übelkeit, sowie verringerter Mageninhalt nach präoperativer Gabe von mit Kohlenhydraten angereicherten Getränken beschrieben. Durch beide Faktoren wird eine Reduktion des Risikos von Aspirationen beschrieben [123]. Eine weitere Studie untersuchte den Mageninhalt nach Gabe von kohlenhydratreichen Getränken 2 Stunden präoperativ sonographisch. Auch in dieser Studie wurde ein reduzierter Mageninhalt direkt vor der Einleitung der Anästhesie beschrieben [606].

Parenterale Ernährung

Bei kritisch kranken Erwachsenen wurde durch die randomisierte multizentrische EPaNIC Studie (Early versus Late Parenteral Nutrition in ICU, n = 4.640) gezeigt, dass eine PE nicht vor dem achten Tag auf der Intensivstation administriert werden sollte [607]. Im Gegensatz zu Erwachsenen haben kritisch kranke Kinder eine limitierte Energie-, Fett und Proteinreserve und einen relativ höheren Energiebedarf [608]. Darauf basierend entstand die Empfehlung, parenteral zu ernähren, wenn eine EE insuffizient, kontraindiziert oder nicht möglich ist [609]. Im Jahr 2016 folgte dann die multizentrische und randomisierte Studie PEPaNIC (Early versus Late Parenteral Nutrition in the Pediatric ICU, n = 1.440), das Äquivalent zur EPaNIC Studie bei Kindern. Entgegengesetzt zu den bisher geltenden Leitlinien, kommt die Studie zum Schluss, dass eine PE erst eine Woche nach Aufnahme auf die Intensivstation beginnen sollte. Der spätere Beginn der PE führt zu statistisch signifikanten Unterschieden hinsichtlich einer reduzierten Anzahl von Infektionen, kürzerem Aufenthalt auf der Intensivstation und verkürzter mechanischer Beatmung im Vergleich mit einer innerhalb von 24 Stunden begonnenen "frühen" parenteralen Applikation [610]. Eine Subgruppenanalyse, nur Neugeborene betrachtend, kam zu ähnlichen Ergebnissen. Auch hier zeigt sich ein Vorteil für den verzögerten Einsatz der PE bei Neugeborenen [611]. Eine Subgruppenanalyse derselben Patientenkohorte, die nur Kinder einschloss, welche bei Eintritt auf die Intensivstation eine Malnutrition zeigten, spricht ebenfalls erst für den Einsatz der PE nach einer Woche. [612]. Diese Erkenntnisse schlugen sich nieder in den Leitlinien aus dem Jahr 2018 der ESPGHAN (European Society for Pediatric Gastroenterology Hepatology and Nutrition). Darin wird die Empfehlung ausgesprochen, eine PE erst eine Woche nach Eintritt auf die

Intensivstation zu starten [613]. Eine abschließende Empfehlung ist allerdings auch hier noch ausstehend.

9 Besonderheiten in der Wundheilung

9.1 Wird eine Supplementierung bei Wundheilungsstörungen und chronischen Wunden empfohlen?

Empfehlung 38							
В	Bei chronischen Wunden sollte frühzeitig eine orale / enterale eiweißreiche Ernährung ggfs. mit Substitution von Spurenelementen verabreicht werden. (BM)						
Modifiziert, Stand 2014	Starker Konsens 100 % Zustimmung						

Kommentar

Akute und chronische Wunden

Es besteht Konsens darüber, dass gerade für die Heilung von akuten und chronischen Problemwunden wie bei einem Dekubitalulkus eine adäguate individualisierte Ernährungstherapie Voraussetzung ist [614] (1+). Die Evidenz zu konkreten Empfehlungen der Ernährungstherapie ist jedoch begrenzt. Dennoch liegen für das Leitlinien-Update aktuelle randomisierte Studien und Metaanalysen vor. Für den primären Endpunkt der qualitativen und quantitativen Wundheilung sind RCT schwierig zu standardisieren. So bezieht sich die Datenlage überwiegend auf chronische Dekubitalulzera, diabetische Fußulzera oder schwere Verbrennungen. Die Zahl der eingeschlossenen Patienten in den überwiegend monozentrischen Studien ist zumeist gering, die Heterogenität stark ausgeprägt und auch wenn die Studienlage zur Supplementierung von Mikronährstoffen bei akuten Wunden eingeschränkt ist [615], kann angenommen werden, dass Präparate mit Anteilen von Zink, Eisen, Karotin, Kupfer, Vitaminen A und C die normale Wundheilung unterstützen können. In einer aktuellen Metaanalyse von 28 Studien zeigten sich bei Patienten mit diabetischen und Dekubitalulzera Vorteile für die Wundheilung bei Anreicherung der Supplemente mit Mineralien, Vitaminen und Antioxidanzien im Vergleich mit einem einfachen Eiweißsupplement [616] (1++).

Wundheilung in verschiedenen Regionen

In der Studie von Collins et al. [617] wurde älteren Patienten (n = 50) mit Wundheilungsstörung als Ernährungsintervention eine orale Trinknahrung über 4 Wochen verabreicht. Untersucht wurde der Einsatz von Lösungen mit 1 oder 2 kcal/mL

hinsichtlich der Effektivität. Verglichen mit der 1 kcal-Gruppe verbesserte sich in der 2 kcal-Gruppe der mentale Status, die Wundheilung und die Exsudatmenge.

Campos et al. [618] haben an chirurgischen Patienten den Effekt einer Trinknahrung auf die Wundheilung und Anastomoseninsuffizienz untersucht. Die Ernährungsintervention zeigte dabei bessere Ergebnisse hinsichtlich Wundheilung und Anastomosenheilung und weniger Komplikationen. Für geriatrische Patienten in Akut- und Langzeitbehandlung zeigte eine systematische Übersicht von 6 Studien mit eingeschränkter Qualität eine signifikante Reduktion der Wundgröße und verbesserte Wundheilung bei Anreicherung einer oralen Trinknahrung mit Arginin [619]. Bei 75 geriatrischen Patienten mit Schenkelhalsfraktur führte eine Supplementierung mit Kalzium-Hydroxymethylbutyrat, Vitamin D und 36 g Eiweiß zu einer besseren Wundheilung [620] (1+).

Im Vergleich mit einem Placebo konnten bei Anreicherung mit Hydroxymethylbutyrat, Arginin und Glutamin für Patienten mit offen operierten abdominellen Malignomen bei präoperativer Gabe für 3 Tage und Fortsetzung für 7 Tage postoperativ keine Unterschiede in der Rate von Wund- sowie anderer Komplikationen gezeigt werden. Auch die Körperzusammensetzung und Handgriffstärke war ohne Unterschied [448] (1+).

Bei 20 Traumapatienten mit Wundheilungsstörung ist doppelblind randomisiert und Placebo kontrolliert bei Gabe eines Supplements mit Antioxidantien (α -Tocopherol, β -Carotin, Zink und Selen) und Glutamin eine raschere Wundheilung gezeigt worden (35 \pm 22 d vs. 70 \pm 35 d; p = 0,01) [621] (1+).

Farreras et al. (2005) zeigten in einer prospektiven randomisierten Studie bei 60 Patienten nach Magenresektion mit erst postoperativer immunmodulierender Supplementierung (Arginin, Omega-3-Fettsäuren, Ribonukleotide) signifikant weniger Wundheilungsstörungen, Nahtdehiszenzen und infektiöse Komplikationen [622]. Als Maß für die Wundheilung war die Menge an Hydroxyprolin in einem subkutan implantierten Katheterröhrchen signifikant höher als in der Interventionsgruppe. (59,7 nmol (5,0-201,8), vs. 28,0 nmol (5,8-89,6) p = 0,0018) (1+).

Diabetische Ulzera

Für die Wundheilung diabetischer Fußulzera haben einzelne randomisierte Studien metabolische Vorteile für die Supplementierung mit Magnesium [623] (1+), Magnesium

und Vitamin E [624] (1+), Zink [625] (1+), Probiotika [626] (1+) und Omega-3 Fettsäuren (1000 mg 2 Mal pro Tag) [627] (1++) gezeigt. Für diese Patienten mit diabetischen Fußulzera hat die Anreicherung mit Hydroxymethylbutyrat, Arginin und allem bei niedrigem Serumalbumin verminderter Glutamin vor und Extremitätenperfusion eine bessere Heilung in Woche 16 gezeigt [628] (1+). In einer Studie mit 15 vs. 14 Patienten wurde gezeigt, dass neben der Supplementierung auch die Schulung der Diabetiker einen wichtigen Aspekt bildet So heilten diabetische Ulzera 13 Mal schneller durch 2 Mal tägliche Supplementierung und Schulung der Diabetiker [629] (1+). Eine aktuelle Cochrane Metaanalyse von 9 randomisierten Studien mit 629 Patienten hat jedoch in 8 Studien keine sicheren Vorteile für eine evtl. auch dosisabhängige Supplementierung ergeben. Nebenwirkungen wurden nicht [630] (1++). Verglichen wurden verschiedene beobachtet Regime eiweißangereicherten Trinknahrung gegen Placebo. Dabei zeigten sich die Heilungsraten nicht unterschiedlich, ebenso konnten keine Unterschiede in Hinblick auf Amputationsrate, Nebenwirkungen, Entwicklung weiterer Ulzerationen und Lebensqualität erbracht werden [630] (1++).

Prophylaxe/ Prävention eines Dekubitus

Zur Prävention eines Dekubitus gehört neben den Basismaßnahmen (Lagerung, Druckentlastung, Mobilisation) auch die Ernährungsintervention. Es existieren 2 RCT mit kleinen Fallzahlen, die diesen Zusammenhang untersucht haben.

Eine randomisierte Studie von Theilla et al. [631] an 28 Intensivpatienten mit akutem Lungenversagen hat eine Standardnahrung versus eine Diät, die reich an Eicosapentaensäure und γ-Linolensäure über 7 Tage verglichen. Im Ergebnis traten weniger neue Dekubiti in der Interventionsgruppe auf. Die kontrollierten Ernährungsparameter zeigten eine deutliche Verbesserung durch den Einsatz von Eicosapentaensäure und γ-Linolensäure.

Die placebokontrollierte Studie von Houwing et al. [632] hat 103 Patienten mit einer Schenkelhalsfraktur untersucht. Die Therapiegruppe bekam zusätzlich orale Trinknahrung angereichert mit Protein, Arginin, Zink und Antioxidanzien. Ein Unterschied in der Inzidenz von Dekubitalulzera konnte nicht gefunden werden (Intervention 55 % vs. Placebo 59 %) Das Auftreten von Druckulzera m Stadium II war mit 18 % vs. 28 % tendenziell zugunsten der Therapiegruppe. Die Zeit bis zum

Auftreten eines Dekubitus unterschied sich ebenfalls: In der Therapiegruppe dauerte es im Durchschnitt 3,6 Tage vs. 1,6 Tage in der Kontrollgruppe (p = 0,09). Die regelmäßige enterale Zusatzernährung zur Prophylaxe eines Dekubitus könnte somit vorteilhaft sein.

Therapie des Dekubitus

Die allgemeinen Empfehlungen aller Fachgesellschaften hinsichtlich der Kalorienaufnahme sind eindeutig hinweisend auf die Notwendigkeit eines höheren Kalorienangebotes bei Patienten mit Dekubitus. Hierzu existieren einige RCT. Bauer et al. (2013) haben die Bedeutung der oralen Supplementierung für die Wundheilung gezeigt, während die Anreicherung mit speziellen Substraten keine Vorteile brachte [633] (1+).

Die Studie von Ohura et al. [554] ist eine Multizenterstudie. Dreißig Patienten mit einem Dekubitus wurden dabei randomisiert und eine Standarddiät gegen eine zusätzliche orale Trinknahrung über 12 Wochen getestet. Die Einstellung der Kalorien erfolgte nach Harris-Benedict (Basal Energy Expenditure x 1,1 x 1,3 bis 1,5). Das Alter der Patienten lag im Durchschnitt bei 81 Jahren. Gemessen wurden die tatsächliche Kalorienaufnahme und die Veränderung der Wundfläche. Die Kalorienaufnahme war in der Therapiegruppe signifikant höher. Die Kontrollgruppe erhielt 29,1 kcal/kg Körpergewicht/d, die Therapiegruppe 37,9 kcal/kg Körpergewicht/. In der Beobachtungszeit nahm die Wundfläche in der Therapiegruppe signifikant schneller ab. Bereits nach 8 Wochen war dieser Effekt deutlich und hielt bis zum Studienende an.

Die RCT von van Anholt et al. [555] untersuchte nicht mangelernährte Patienten mit Dekubitus. Die Therapiegruppe erhielt täglich zusätzlich 3 Mal 200 mL orale Trinknahrung. wohingegen der Kontrollgruppe ein Placebo verabreicht wurde. Die 34 Patienten wurden 8 Wochen therapiert. In der Therapiegruppe verkleinerte sich die Ulkusgröße signifikant (10,5 cm² vs. 11,5 cm²). Außerdem war der Verbrauch an Verbänden in der Therapiegruppe signifikant geringer und die Häufigkeit an Exsudat verringerte sich (1+).

Stratton et al. [634] veröffentlichten eine Metaanalyse zur Ernährungstherapie bei Dekubitus. Leider konnten nur 3 RCT in die Analyse eingehen. Die Auswertung der

Studien ergab, dass eine Ernährungsintervention zu geringeren Exsudatmengen führt, daher mit weniger Verbänden und kürzeren Verbandzeiten einhergeht. (1++)

Cereda et al. [556] untersuchten bei älteren Patienten mit Dekubitus (n = 28) den Effekt des additiven Einsatzes oraler Trinknahrung mit Arginin, Zink und Vitamin C über 12 Wochen. Die Ernährungsintervention führte zur schnelleren Heilung bei einem Dekubitus. Die Abnahme der Wundgröße lag bei -6,1 cm² in der Therapiegruppe vs. -3,3 cm² in der Kontrollgruppe. (1+) (p < 0,05).

Die Effektivität der oralen Supplementation bei Dekubituspatienten wurde ebenfalls von Soriano et al. [557] bestätigt. In einer offenen Studie wurde orale Trinknahrung mit Arginin, Zink und Vitamin C über 3 Wochen Patienten mit Dekubitus gegeben (n = 39). Der Verlauf der Wundheilung wurde dokumentiert. Die Ernährungsintervention führte zur schnelleren Heilung beim Dekubitus. Die Wundgröße nahm signifikant von 23,6 cm² auf 19,2 cm² ab, der Bedarf an Verbandsmaterial wurde geringer, da auch Exsudatmenge und nekrotisches Gewebe signifikant abnahmen (2+).

Multizentrisch haben Cereda et al (2015) (1+) in einer großen Studie bei 200 mangelernährten Patienten mit Druckulzera II, III und IV randomisiert eine energiedichte, proteinreiche mit Arginin, Zink und Antioxidans angereicherte Formuladiät (400 mL/d) isokalorisch, isonitrogen über 8 Wochen verglichen [635]. Der primäre Endpunkt war die prozentuale Veränderung der Wundfläche nach 8 Wochen. Sekundäre Endpunkte waren die Komplettheilung, Reduktion der Wundfläche um 40 % und mehr, die Inzidenz von Wundinfektionen, die Gesamtzahl der Verbände nach 8 Wochen und die prozentuale Veränderung der Wundfläche nach 4 Wochen. Als Ergebnis fand sich in der Interventionsgruppe (n = 101) ein Unterschied in der mittleren Verminderung der Wundfläche nach 8 Wochen (60,9 %; 95%CI 54,3 % -67,5 %) als in der Kontrollgruppe (n = 99) (45,2 %; 95%Cl 38,4 % - 52,0 %), welcher adjustiert 18.7% (5.7% - 31.8%) betrug und signifikant war (p = 0.017). Eine signifikant häufigere Reduktion der Wundfläche über 40 % wurde nach 8 Wochen in der Interventionsgruppe beobachtet (OR 1,98 (95%Cl 1,12 - 3,48; p = 0,018). Als Einschränkung des positiven Einflusses der über 8 Wochen angereicherten Ernährung auf die Wundheilung wurde die Begrenzung auf mangelernährte Patienten in Pflegeinrichtungen oder mit Homecare angegeben.

Eine nach AMSTAR II gut bewertete Metaanalyse von 7 Studien hat für Patienten mit Dekubitus signifikante Vorteile für die Wundheilung bei Supplementierung mit Zink gezeigt [636] (1++): (RR 1,44; 95%CI, 1,01 – 2,06; p = 0,043, I² = 19,3 %). Theilla et al. (2012) haben randomisiert bei 40 Patienten für den Einsatz einer Formuladiät mit Omega-3-Fettsäuren ein vermindertes Fortschreiten des Decubitus und niedrigere CRP-Spiegel im Serum gezeigt [637]. Leigh et al. (2012) haben 2 verschiedene Dosierungen der Arginingabe (4,5 vs. 9 g/d) verglichen [638]. Ein Unterschied in der Wundheilung wurde nicht gesehen, sodass die niedrigere Dosis ausreichend erscheint (1+). Günstige Auswirkung auf die Vitalität des Wundgrunds wurde zudem bei Einsatz einer mit Hydroxymethybutyrat, Arginin und Glutamin angereicherten Diät beobachtet [639] (1+).

Die regelmäßige enterale Zusatzernährung in der Therapie eines Dekubitus ist somit effektiv hinsichtlich einer schnelleren Wundheilung, Reduktion des Exsudates und geringere Verbandswechselzeiten. So sollte die Kalorienmenge pro Tag 30 - 35 kcal/kg Körpergewicht betragen.

Ernährungsintervention bei Verbrennungen

Die Verbrennung ist ein hochkataboles Krankheitsbild. Die Patienten werden nach Verbrennungen mehrfach chirurgisch versorgt.

Eine Cochrane Analyse von Wasiak et al. (2006) konnte in 3 randomisierten Studien keine klare Überlegenheit einer frühen, innerhalb von 24 Stunden begonnenen EE gegenüber einem späteren Beginn hinsichtlich Krankenhausverweildauer und Letalität zeigen. Es bestanden jedoch Hinweise auf eine günstige Beeinflussung der hypermetabolen Reaktion auf das Verbrennungstrauma [640] (1++).

In der Cochrane Analyse von Masters et al. (2012) wurde bei Patienten mit mindestens 10 % Verbrennung der Körperoberfläche der Frage nach klinischen Vorteilen einer enteralen kohlenhydrat- und proteinreichen, fettarmen Diät im Vergleich mit einer kohlenhydratarmen, fettreichen Ernährung nachgegangen [641] (1++). Zwei randomisierte Studien mit Ergebnissen von 93 Patienten konnten analysiert werden. Die Patienten, die die kohlenhydratreiche Ernährung erhalten hatten, hatten ein signifikant geringeres Risiko eine Pneumonie zu entwickeln (OR 0,12 (95%CI 0,04 – 0,39) als die Patienten mit der fettreichen Formuladiät (p = 0,0004). In der Gruppe der Patienten mit kohlenhydratreicher Diät bestand sogar eine Tendenz zu geringerer

Letalität (OR 0,36; 95%Cl 0,11 – 1,15, p = 0,08). Das Bias-Risiko wurde für beide Studien mäßig bis hoch eingeschätzt. Eine aktuelle systematische Übersicht von 11 Studien hat signifikante Vorteile hinsichtlich der Inzidenz von Pneumonien, Wundinfektionen, akutem Lungenversagen, Lebersteatose und Sepsis gezeigt. Wundheilung und Krankenhausverweildauer waren kürzer. Metabolische Vorteile waren niedrigere Stickstoffverluste im Urin, verbesserte Stickstoffbilanz, höhere Insulin- und Insulin-like growth factor 1 (IGF-1) Spiegel, sowie niedrigere Kortisolspiegel. Aufgrund der Ergebnisse sehen die Autoren die Evidenz zur Empfehlung der Zusammensetzung bei Verbrennungspatienten auf der Intensivstation mit ≤ 15 % Fett und ≥ 60 % Kohlenhydraten [642] (1++).

Acht kleinere Studien (randomisiert n = 4, nicht randomisiert n = 4) mit 398 Patienten wurden daraufhin von Kurmis et al. systematisch gesichtet und metaanalysiert, Hierbei zeigte sich, dass die die Verwendung von parenteral verabreichten kombinierten Spurenelementen (Kupfer, Selen und Zink) nach Brandverletzungen positive Auswirkungen auf die Verringerung der gesamten infektiösen Komplikationen hat (-1,25 Episoden, 95%Cl -170 - -0,80; p < 0,00001). Zudem wurde die Entwicklung von pulmonalen Infekten durch eine kombinierte Spurenelement-Supplementierung verringert [643] (1++).

Eine Verbesserung der Wundheilung bei brandverletzten Patienten wurde zudem gezeigt für die Gabe von Sojaöl [644] (1+), Vitaminen in Kombination mit Kalzium und Magnesium [645] (1+), Probiotika [646] (1+) und Olivenöl bei Beteiligung von 10 – 20 % der Körperoberfläche [647] (1+).

Zur Immunonutrition hat eine Cochrane-Analyse 16 randomisierte Studien teilweise mit eingeschränkter Qualität mit 678 Patienten eingeschlossen [326] (1++). Am häufigsten wurde Glutamin eingesetzt (7 der 16 Studien). Im Vergleich mit der Kontrolle isonitrogenen fand sich eine signifikant verminderte mittlere Krankenhausverweildauer (-5,65 d; 95%CI -8,09 - -3,22, I² = 29,5 %) und Letalität (RR 0,25; 95%Cl 0,08 - 0,78, l² nicht anwendbar). Ein signifikanter Einfluss auf die Infektion der Brandwunden konnte nicht gezeigt werden. Aufgrund der geringen Fallzahl wurde ein falsch positiver Effekt diskutiert. Für die anderen immunmodulierenden Substrate (Arginin, BCAA, Omega-3-Fettsäuren und Ribonukleotide wurde ein Effekt nicht nachgewiesen. einer aktuell durchgeführten multizentrischen großen Placebokontrollierten Doppelblindstudie (RE-ENERGIZE) 1.209 bei

schwerstverbrannten Patienten (im Mittel 33 % verbrannte Körperoberfläche) ist der Einfluss einer EE innerhalb von 72 Stunden beginnenden mit Glutamin (0,5g/kg Körpergewicht/d) angereicherten Ernährung untersucht worden. Für den primären Endpunkt die Zeitdauer bis zur Entlassung lebend konnte kein signifikanter Unterschied gefunden werden (40 vs. 38 d, HR 0,91; 95%Cl, 0,80 – 1,04; p = 0,17). Die 6-Monatsletalität war 17,2 % in der Glutamin- und 16,2 % in der Kontrollgruppe HR 1,06; 95%Cl, 0,80 – 1,41) [648] (1+).

In der Zusammenfassung sprechen die Ergebnisse insgesamt für eine frühe enterale kohlenhydratreiche Ernährung bzw. orale Supplementierung mit Trinknahrung. Die Anreicherung mit immunmodulierenden Substraten und Antioxidantien kann erwogen werden, wobei die Evidenz gerade für die einzelnen Substrate weiterhin begrenzt ist.

10 Forschungsfragen

Zur Beantwortung folgender Forschungsfragen /-gebiete sollten in naher Zukunft klinische Studien durchgeführt werden, um die ernährungsmedizinische Versorgungslage chirurgischer Patienten zu verbessern.

- 1. Klinischer Nutzen der medizinischen Ernährungstherapie im ERAS
- 2. Klinischer Nutzen der Supplementierung mit einzelnen oder kombinierten immunmodulierenden Substraten einschließlich Synbiotika in verschiedenen chirurgischen Subgruppen
- 3. Beginn einer supplementierenden parenteralen Ernährung
- 4. Bedeutung der Ernährungstherapie in der poststationären ambulanten Phase
- 5. Langzeitfolgen der klinischen Ernährungstherapie
- 6. Entwicklung neuer Patienten orientierter und klinisch relevanter Outcome Parameter zur Evaluation des Erfolges einer Ernährungstherapie

Interessenskonflikte

Im Folgenden sind die Interessenerklärungen als tabellarische Zusammenfassung dargestellt sowie die Ergebnisse der Interessenkonfliktbewertung und Maßnahmen, die nach Diskussion der Sachverhalte von der der LL-Gruppe beschlossen und im Rahmen der Konsensuskonferenz umgesetzt wurden.

	Tätigkeit als Berater*in und/oder Gutachter*in	Mitarbeit in einem Wissenschaftlichen Beirat (advisory board)	Bezahlte Vortrags-/oder Schulungs- tätigkeit	Bezahlte Autor*innen- /oder Coautor*inn enschaft	Forschungs- vorhaben/ Durchführung klinischer Studien	Eigentümer*innen- interessen (Patent, Urheber*innen- recht, Aktienbesitz)	Indirekte Interessen	Von COI betroffene Themen der Leitlinie, Einstufung bzgl. der Relevanz, Konsequenz
Prof. Bernd, Reith	Nein	Fresenius Kabi	Wisswerk Köln	Nein	PubliCare WissWerk	Nein	Nein	Periphere parenterale Ernährung (moderat), Stimmenthaltung
Prof. Breitenstein, Stefan	Nein	Nein	Nein	Nein	Nein	Nein	Nein	kein Thema (keine), keine
Prof. Gabor, Sabine	Nein	Faculty Bord European Surgery	Vortrag Nutrition 2019 in Bregenz	Nein	Nein	Nein	Mitglied: Mitgliedschaft AKE, Wissenschaftliche Tätigkeit: Thorax und Ösophaguschirurgie, Wissenschaftliche Tätigkeit: Thorax und Ösophaguschirurgie	Perioperative Ernährung (gering), Keine.
Prof. Holland- Cunz, Stefan	Nein	Nein	Nein	Nein	Nein	Nein	Mitglied: Vorstandsmitglied der SGKC (Swiss Society of Pediatric Surgery), Wissenschaftliche Tätigkeit: Hirschsprung's Disease, Wissenschaftliche Tätigkeit: Visceral Pediatric Surgery, Beteiligung an Fort-/Ausbildung: Universitäre Studentenlehre, Persönliche Beziehung: Keine	kein Thema (keine), keine
Prof. Kemen, Matthias	Nein	Nein	Nein	Nein	Nein	Nein	Mitglied: DGEM, Mitglied: DGCH, Wissenschaftliche Tätigkeit: Tumorchirurgie, minimal invasive Chirurgie, Adipositaschirurgie	kein Thema (keine), keine
Prof. Längle, Friedrich	Nein	Nein	Nein	Nein	Nein	Nein	Mitglied: AKE-Arbeitsgemeinschaft Klinische Ernährung, Finanzreferent, Wissenschaftliche Tätigkeit: Österreichische Gesellschaft für Chirurgie	kein Thema (keine), keine

	Tätigkeit als Berater*in und/oder Gutachter*in	Mitarbeit in einem Wissenschaftlichen Beirat (advisory board)	Bezahlte Vortrags-/oder Schulungs- tätigkeit	Bezahlte Autor*innen- /oder Coautor*inn enschaft	Forschungs- vorhaben/ Durchführung klinischer Studien	Eigentümer*innen- interessen (Patent, Urheber*innen- recht, Aktienbesitz)	Indirekte Interessen	Von COI betroffene Themen der Leitlinie, Einstufung bzgl. der Relevanz, Konsequenz
							Präsident	
Prof. Martignoni, Marc	Nein	Nein	BBraun Baxter Fresenius	Nein	BBraun	Nein	Wissenschaftliche Tätigkeit: Chirurgie Mangelernährung Kachexie, Wissenschaftliche Tätigkeit: Viszeralchirurgie	kein Thema (gering), Keine.
Prof. Rayes, Nada	Nein	Nein	Fa Shire	Nein	Nein	Nein	Mitglied: Beirat der Sektion Nebenniere der Dt. Gesellschaft für Endokrinologie, Wissenschaftliche Tätigkeit: Nebenniere, Probiotika, Wissenschaftliche Tätigkeit: endokrine Chirurgie/Endokrinologie	kein Thema (keine), keine
Schweinlin, Anna	Nein	Nein	Nein	Nein	Pfizer Consumer Healthcare, Symbiopharm GmbH	Nein	Nein	kein Thema (keine), keine
Prof. Dr. Schwenk, Wolfgang	Fa. Ethicon Norderstedt, Fa. Johnson Medical, Norderstedt	Firma Coloplast, Dänemark	Multiple Vorträge zum Thema Perioperative Medizin und Fast-track / ERAS im Rahmen industriegespon serter eigenständiger Veranstaltungen oder Satelittensympo sien im Rahmen wissenschaftlich er Kongresse. Unterstützende Firmen: Fa. Ethicon, Norderstedt; Fa. Medtronic, Tönisvorst; Fa. Merck,	Mitherausgeb er des Buches: Schwenk,Kalf f, Freys: Perioperative Medizin - Chirurgie ist mehr als Operieren! Thieme Verlag. Multiple Buchkapitel zu den Themen Perioperative Medizin, Aktutschmerz und Kolonkarzino m.	Keine	Alleiniger Gesellschafter der GOPOM GmbH, Geschäftsführer der GOPOM GmbH	Mitglied: Vorsitzender der Arbeitsgemeinschaft für perioperative Medizin der Deutschen Gesellschaft für Chirurgie, Mitglied: Sprecher der Arbeitsgruppe für perioperativem Medizin der Deutschen Gesellschaft für Allgemein und Viszeralchirurgie, Mitglied: Vorsitzender des Konvent Leitender Krankenhauschirurgen , Mitglied: Mitglied folgender Fachgesellschaften bzw. Regionalvereinigungen: Deutsche Gesellschaft für Chirurgie, Deutsche Gesellschaft für Chirurgie, Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie, Vereinigung der Chirurgen Berlins und Brandenburgs, Norddeutsche Chirurgenvereinigung, NRW-Chirurgen, International Fellow des American College of Surgeons, Deutsche Krebsgesellschaft, Netzwerk Evidenzbasierten Medizin, Mitglied des erweiterten Vorstand der Chirurgischen Arbeitsgemeinschaft für Minimal Invasive Chirurgie der	Glucosedrink (moderat), Stimmenthaltung

	Tätigkeit als Berater*in und/oder Gutachter*in	Mitarbeit in einem Wissenschaftlichen Beirat (advisory board)	Bezahlte Vortrags-/oder Schulungs- tätigkeit	Bezahlte Autor*innen- /oder Coautor*inn enschaft	Forschungs- vorhaben/ Durchführung klinischer Studien	Eigentümer*innen- interessen (Patent, Urheber*innen- recht, Aktienbesitz)	Indirekte Interessen	Von COI betroffene Themen der Leitlinie, Einstufung bzgl. der Relevanz, Konsequenz
			Freiburg;, Jährlich Vortrag und Manuskript zur Perioperativen Medizin bzw. Fast-track im Rahmen des DGAV update Chirurgie der Firma med update				Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie, Mitglied: Deutsche Schmerzgesellschaft, Wissenschaftliche Tätigkeit: Schwerpunkte: Allgemein- und Viszeralchirurgie, Chirurgische Onkologie, Minimalinvasive Chirurgie, Perioperative Medizin. Publikationen: Multiple Publikationen in der Fachliteratur zur Perioperativen Medizin und optimierten perioperativen Behandlungskonzepten wie Fast- track / ERAS. , Wissenschaftliche Tätigkeit: Allgemein- und Viszeralchirurgie, Chirurgische Onkologie, Minimalinvasive Chirurgie, Perioperative Medizin, Beteiligung an Fort-/Ausbildung: Jährliches Facharztseminar zur Vorbereitung auf die Facharztprüfung für Viszeralchirurgie des Berufsverbands Deutscher Chirurgen in Solingen. Mehrere Team-Workshops der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie "Fast-track 2.0 Neustart im G- DRG-System", Persönliche Beziehung: keine	
Prof. Dr. Seehofer, Daniel	BMBF, DFG	Olympus, SIRTEX, Biocompatibles, Novartis, Nein	Astellas, Biocompatibles, Merck-Serono, Falk-Pharma, Deutsche Stiftung Organtransplant ation, Johnson,	Nein	Novartis	keine	Mitglied: keine, Wissenschaftliche Tätigkeit: Hepatobiliäre Chirurgie Leberregeneration Minimal Invasive Chirurgie Lebertumore Lebermetastasen Transplantationschirurgie, Wissenschaftliche Tätigkeit:	kein Thema (keine), keine

	Tätigkeit als Berater*in und/oder Gutachter*in	Mitarbeit in einem Wissenschaftlichen Beirat (advisory board)	Bezahlte Vortrags-/oder Schulungs- tätigkeit	Bezahlte Autor*innen- /oder Coautor*inn enschaft	Forschungs- vorhaben/ Durchführung klinischer Studien	Eigentümer*innen- interessen (Patent, Urheber*innen- recht, Aktienbesitz)	Indirekte Interessen	Von COI betroffene Themen der Leitlinie, Einstufung bzgl. der Relevanz, Konsequenz
			Novartis				Hepatobiliäre Chirurgie Minimal Invasive Chirurgie Pankreaschirurgie Transplantationschirurgie, Beteiligung an Fort-/Ausbildung: keine, Persönliche Beziehung: keine	
Prof. Senkal, Metin	Nein	Nein	Nein	Nein	Fresenius Kabi	Nein	Mitglied: Mitglied Deutsche Gesellschaft für Ernährungsmedizin , Beteiligung an Fort-/Ausbildung: Fortbildung der DGEM Bochum	Periphere parenterale Ernährung (gering), Keine.
Prof. Stoppe, Christian	Baxter , Fresenius Kabi	Nein	Fresenius	Nein	biosyn Arzneitmittel GMBH	Nein	Nein	Infusionen (parenterale Ernährung, Glutamin, omega- Fettsäuren) (moderat), Stimmenthaltung
Prof. Weimann, Arved	Nein	Nein	Fresenius Kabi Deutschland , B. Braun , Falk Foundation , Baxter , Hochschule Anhalt	Nein	Mucos	SECA	Mitglied: DGCH, DGAV, DGEM, DEGUM, DIVI, DKG European Society for Clinical Nutrition and Meatbolism (ESPEN), American Society for Parenteral and Enteral Nutrition (ASPEN), Mitglied: Arbeitsgruppenleiter: Leitlinie Perioperative Ernährung (DGEM, ESPEN) Mandatsträger für die AWMF-Leitlinien Ösophaguskarzinom, Magenkarzinom, Komplementärmedizin, POMGAT, Pankreas , Mitglied: Sächsische Landesärztekammer (SLAEK): Mitglied der Lebendspendekommission, Ärztliche Ausbildung , Mitglied: BÄK - AG Verfahrensgrundsätze und Ethik der STÄKO Organtransplantation , Mitglied: Referent Deutsche Akademie für Ernährungsmedizin e.V. (DAEM)und MemoMed für das Curriculum Enährungsmedizin der BÄK , Wissenschaftliche Tätigkeit:	Forschungsgrants nur zum Te mit Bezug zur Leitlinie. Enthaltung bei Glutamin und omega-3 Fettsäuren. (modera Stimmenthaltung

	Tätigkeit als Berater*in und/oder Gutachter*in	Mitarbeit in einem Wissenschaftlichen Beirat (advisory board)	Bezahlte Vortrags-/oder Schulungs- tätigkeit	Bezahlte Autor*innen- /oder Coautor*inn enschaft	Forschungs- vorhaben/ Durchführung klinischer Studien	Eigentümer*innen- interessen (Patent, Urheber*innen- recht, Aktienbesitz)	Indirekte Interessen	Von COI betroffene Themen der Leitlinie, Einstufung bzgl. der Relevanz, Konsequenz
							Perioperative Ernährung - Konditionierung von viszeralchirurgischen Hochrisikopatienten , Wissenschaftliche Tätigkeit: Viszeralchirurgie / Perioperative Ernährung - Konditionierung von viszeralchirurgischen Hochrisikopatienten , Beteiligung an Fort-/Ausbildung: Fortbildungsveranstaltung der Deutschen Gesellschaft für Ernährungsmedizin e.V. in Leipzig/Machern	
van Thiel, Ingo	Nein	Albireo Pharma, Boehringer Ingelheim, Jannssen, Roche, Albireo, GlaxoSmithKline, AstraZeneca, AstraZeneca	Nein	Nein	Nein	Nein	Mitglied: Fest Angestellter der Deutschen Leberhilfe e.V.	kein Thema (keine), keine

Danksagung

Die AutorInnen danken Dr. med. Thomas Bächler und Herrn Lukas Gantner, beide KSW Kantonspital Winterthur, Schweiz, für die großartige Unterstützung. Der Dank gilt auch Frau Ulrike Dornheim, Leipzig und Herrn Ingo van Thiel, Deutsche Leberhilfe e. V., Köln für die wertvolle Unterstützung und Einbringung der Patientenperspektive.

Referenzen

- 1. Soeters P, Bozzetti F, Cynober L et al. Meta-analysis is not enough: The critical role of pathophysiology in determining optimal care in clinical nutrition. Clin Nutr 2016; 35: 748-757. doi:10.1016/j.clnu.2015.08.008
- 2. Yeh DD, Fuentes E, Quraishi SA et al. Adequate Nutrition May Get You Home: Effect of Caloric/Protein Deficits on the Discharge Destination of Critically III Surgical Patients. JPEN J Parenter Enteral Nutr 2016; 40: 37-44. doi:10.1177/0148607115585142
- 3. Horowitz M, Neeman E, Sharon E et al. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol 2015; 12: 213-226. doi:10.1038/nrclinonc.2014.224
- Gustafsson UO, Oppelstrup H, Thorell A et al. Adherence to the ERAS protocol is Associated with 5-Year Survival After Colorectal Cancer Surgery: A Retrospective Cohort Study. World J Surg 2016; 40: 1741-1747. doi:10.1007/s00268-016-3460-y
- 5. Gillis C, Carli F. Promoting Perioperative Metabolic and Nutritional Care. Anesthesiology 2015; 123: 1455-1472. doi:10.1097/ALN.000000000000795
- 6. Alazawi W, Pirmadjid N, Lahiri R et al. Inflammatory and Immune Responses to Surgery and Their Clinical Impact. Ann Surg 2016; 264: 73-80. doi:10.1097/SLA.000000000001691
- 7. Aahlin EK, Trano G, Johns N et al. Risk factors, complications and survival after upper abdominal surgery: a prospective cohort study. BMC Surg 2015; 15: 83. doi:10.1186/s12893-015-0069-2
- 8. Soeters MR, Soeters PB, Schooneman MG et al. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am J Physiol Endocrinol Metab 2012; 303: E1397-1407. doi:10.1152/ajpendo.00397.2012
- 9. Soeters PB, Schols AM. Advances in understanding and assessing malnutrition. Curr Opin Clin Nutr Metab Care 2009; 12: 487-494. doi:10.1097/MCO.0b013e32832da243
- Lambert JE, Hayes LD, Keegan TJ et al. The Impact of Prehabilitation on Patient Outcomes in Hepatobiliary, Colorectal, and Upper Gastrointestinal Cancer Surgery: A PRISMA-Accordant Meta-analysis. Ann Surg 2021; 274: 70-77. doi:10.1097/SLA.0000000000004527
- 11. Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth 1997; 78: 606-617. doi:10.1093/bja/78.5.606
- 12. Fearon KC, Ljungqvist O, Von Meyenfeldt M et al. Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr 2005; 24: 466-477. doi:10.1016/j.clnu.2005.02.002
- 13. Ljungqvist O. ERAS--enhanced recovery after surgery: moving evidence-based perioperative care to practice. JPEN J Parenter Enteral Nutr 2014; 38: 559-566. doi:10.1177/0148607114523451
- 14. Bakker N, Cakir H, Doodeman HJ et al. Eight years of experience with Enhanced Recovery After Surgery in patients with colon cancer: Impact of

- measures to improve adherence. Surgery 2015; 157: 1130-1136. doi:10.1016/j.surg.2015.01.016
- Gustafsson UO, Scott MJ, Schwenk W et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr 2012; 31: 783-800. doi:10.1016/j.clnu.2012.08.013
- 16. Lassen K. Consensus Review of Optimal Perioperative Care in Colorectal Surgery. Arch Surg 2009; 144: 961. doi:10.1001/archsurg.2009.170
- 17. Varadhan KK, Neal KR, Dejong CH et al. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. Clin Nutr 2010; 29: 434-440. doi:10.1016/j.clnu.2010.01.004
- 18. Lassen K, Soop M, Nygren J et al. Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery (ERAS) Group recommendations. Arch Surg 2009; 144: 961-969. doi:10.1001/archsurg.2009.170
- 19. Greco M, Capretti G, Beretta L et al. Enhanced recovery program in colorectal surgery: a meta-analysis of randomized controlled trials. World J Surg 2014; 38: 1531-1541. doi:10.1007/s00268-013-2416-8
- 20. Liu F, Wang W, Wang C et al. Enhanced recovery after surgery (ERAS) programs for esophagectomy protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2018; 97: e0016. doi:10.1097/MD.000000000010016
- 21. Siotos C, Stergios K, Naska A et al. The impact of fast track protocols in upper gastrointestinal surgery: A meta-analysis of observational studies. Surgeon 2018; 16: 183-192. doi:10.1016/j.surge.2017.12.001
- 22. Mortensen K, Nilsson M, Slim K et al. Consensus guidelines for enhanced recovery after gastrectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Br J Surg 2014; 101: 1209-1229. doi:10.1002/bjs.9582
- 23. Wang LH, Zhu RF, Gao C et al. Application of enhanced recovery after gastric cancer surgery: An updated meta-analysis. World J Gastroenterol 2018; 24: 1562-1578. doi:10.3748/wjg.v24.i14.1562
- 24. Balzano G, Zerbi A, Braga M et al. Fast-track recovery programme after pancreatico- duodenectomy reduces delayed gastric emptying. Br J Surg 2008; 95: 1387-1393. doi:10.1002/bjs.6324
- 25. Braga M, Pecorelli N, Ariotti R et al. Enhanced recovery after surgery pathway in patients undergoing pancreaticoduodenectomy. World J Surg 2014; 38: 2960-2966. doi:10.1007/s00268-014-2653-5
- 26. Ji HB, Zhu WT, Wei Q et al. Impact of enhanced recovery after surgery programs on pancreatic surgery: A meta-analysis. World J Gastroenterol 2018; 24: 1666-1678. doi:10.3748/wjg.v24.i15.1666

- 27. Nygren J, Thacker J, Carli F et al. Guidelines for perioperative care in elective rectal/pelvic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr 2012; 31: 801-816. doi:10.1016/j.clnu.2012.08.012
- 28. Patel HR, Cerantola Y, Valerio M et al. Enhanced recovery after surgery: are we ready, and can we afford not to implement these pathways for patients undergoing radical cystectomy? Eur Urol 2014; 65: 263-266. doi:10.1016/j.eururo.2013.10.011
- 29. Wijk L, Franzen K, Ljungqvist O et al. Implementing a structured Enhanced Recovery After Surgery (ERAS) protocol reduces length of stay after abdominal hysterectomy. Acta Obstet Gynecol Scand 2014; 93: 749-756. doi:10.1111/aogs.12423
- 30. Nelson G, Altman AD, Nick A et al. Guidelines for pre- and intra-operative care in gynecologic/oncology surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations--Part I. Gynecol Oncol 2016; 140: 313-322. doi:10.1016/j.ygyno.2015.11.015
- 31. Bond-Smith G, Belgaumkar AP, Davidson BR et al. Enhanced recovery protocols for major upper gastrointestinal, liver and pancreatic surgery. Cochrane Database Syst Rev 2016; 2: CD011382. doi:10.1002/14651858.CD011382.pub2
- 32. Slieker J, Frauche P, Jurt J et al. Enhanced recovery ERAS for elderly: a safe and beneficial pathway in colorectal surgery. Int J Colorectal Dis 2017; 32: 215-221. doi:10.1007/s00384-016-2691-6
- 33. Bozzetti F. Perioperative nutritional support in the ERAS approach. Clin Nutr 2013; 32: 872-873. doi:10.1016/j.clnu.2013.04.020
- 34. Valentini L, Volkert D, Schütz T et al. Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM). Aktuelle Ernährungsmedizin 2013; 38: 97-111
- 35. Dannhauser A, Van Zyl JM, Nel CJ. Preoperative nutritional status and prognostic nutritional index in patients with benign disease undergoing abdominal operations--Part I. J Am Coll Nutr 1995; 14: 80-90. doi:10.1080/07315724.1995.10718477
- 36. Engelman DT, Adams DH, Byrne JG et al. Impact of body mass index and albumin on morbidity and mortality after cardiac surgery. J Thorac Cardiovasc Surg 1999; 118: 866-873. doi:10.1016/s0022-5223(99)70056-5
- 37. Kama NA, Coskun T, Yuksek YN et al. Factors affecting post-operative mortality in malignant biliary tract obstruction. Hepatogastroenterology 1999; 46: 103-107
- 38. Klein JD, Hey LA, Yu CS et al. Perioperative nutrition and postoperative complications in patients undergoing spinal surgery. Spine (Phila Pa 1976) 1996; 21: 2676-2682. doi:10.1097/00007632-199611150-00018
- 39. Koval KJ, Maurer SG, Su ET et al. The effects of nutritional status on outcome after hip fracture. J Orthop Trauma 1999; 13: 164-169. doi:10.1097/00005131-199903000-00003
- 40. Takagi K, Yamamori H, Toyoda Y et al. Modulating effects of the feeding route on stress response and endotoxin translocation in severely stressed patients

- receiving thoracic esophagectomy. Nutrition 2000; 16: 355-360. doi:10.1016/s0899-9007(00)00231-8
- 41. Ornaghi PI, Afferi L, Antonelli A et al. The impact of preoperative nutritional status on post-surgical complication and mortality rates in patients undergoing radical cystectomy for bladder cancer: a systematic review of the literature. World journal of urology 2021; 39: 1045-1081. doi:10.1007/s00345-020-03291-z
- 42. Martínez-Escribano C, Arteaga Moreno F, Pérez-López M et al. Malnutrition and Increased Risk of Adverse Outcomes in Elderly Patients Undergoing Elective Colorectal Cancer Surgery: A Case-Control Study Nested in a Cohort. Nutrients 2022; 14. doi:10.3390/nu14010207
- 43. Lee DU, Hastie DJ, Fan GH et al. Effect of malnutrition on the postoperative outcomes of patients undergoing pancreatectomy for pancreatic cancer: Propensity score-matched analysis of 2011-2017 US hospitals. Nutr Clin Pract 2022; 37: 117-129. doi:10.1002/ncp.10816
- 44. Ben-Ishay O, Gertsenzon H, Mashiach T et al. Malnutrition in surgical wards: a plea for concern. Gastroenterol Res Pract 2011; 2011: 840512. doi:10.1155/2011/840512
- 45. Butters M, Straub M, Kraft K et al. Studies on nutritional status in general surgery patients by clinical, anthropometric, and laboratory parameters. Nutrition 1996; 12: 405-410. doi:10.1016/s0899-9007(96)00094-9
- 46. Garth AK, Newsome CM, Simmance N et al. Nutritional status, nutrition practices and post-operative complications in patients with gastrointestinal cancer. J Hum Nutr Diet 2010; 23: 393-401. doi:10.1111/j.1365-277X.2010.01058.x
- 47. Guo CB, Zhang W, Ma DQ et al. Hand grip strength: an indicator of nutritional state and the mix of postoperative complications in patients with oral and maxillofacial cancers. Br J Oral Maxillofac Surg 1996; 34: 325-327. doi:10.1016/s0266-4356(96)90012-1
- 48. Guo CB, Ma DQ, Zhang KH. Applicability of the general nutritional status score to patients with oral and maxillofacial malignancies. Int J Oral Maxillofac Surg 1994; 23: 167-169. doi:10.1016/s0901-5027(05)80294-2
- 49. Hulsewé KWE, Meijerink WJHJ, Soeters PB et al. Assessment of outcome of perioperative nutritional interventions. Nutrition 1997; 13: 996-998. doi:10.1016/s0899-9007(97)00376-6
- 50. Jagoe RT, Goodship TH, Gibson GJ. The influence of nutritional status on complications after operations for lung cancer. Ann Thorac Surg 2001; 71: 936-943. doi:10.1016/s0003-4975(00)02006-3
- 51. Lavernia CJ, Sierra RJ, Baerga L. Nutritional parameters and short term outcome in arthroplasty. J Am Coll Nutr 1999; 18: 274-278. doi:10.1080/07315724.1999.10718863
- 52. Mazolewski P, Turner JF, Baker M et al. The impact of nutritional status on the outcome of lung volume reduction surgery: a prospective study. Chest 1999; 116: 693-696. doi:10.1378/chest.116.3.693

- 53. Mohler JL, Flanigan RC. The effect of nutritional status and support on morbidity and mortality of bladder cancer patients treated by radical cystectomy. J Urol 1987; 137: 404-407. doi:10.1016/s0022-5347(17)44049-3
- 54. Nezu K, Yoshikawa M, Yoneda T et al. The effect of nutritional status on morbidity in COPD patients undergoing bilateral lung reduction surgery. Thorac Cardiovasc Surg 2001; 49: 216-220. doi:10.1055/s-2001-16110
- 55. Patterson BM, Cornell CN, Carbone B et al. Protein depletion and metabolic stress in elderly patients who have a fracture of the hip. The Journal of Bone & Joint Surgery 1992; 74: 251-260. doi:10.2106/00004623-199274020-00011
- 56. Pedersen NW, Pedersen D. Nutrition as a prognostic indicator in amputations. A prospective study of 47 cases. Acta Orthop Scand 1992; 63: 675-678. doi:10.1080/17453679209169734
- 57. Rey-Ferro M, Castaño R, Orozco O et al. Nutritional and immunologic evaluation of patients with gastric cancer before and after surgery. Nutrition 1997; 13: 878-881. doi:10.1016/s0899-9007(97)00269-4
- 58. Saluja SS, Kaur N, Shrivastava UK. Enteral nutrition in surgical patients. Surg Today 2002; 32: 672-678. doi:10.1007/s005950200125
- 59. van Bokhorst-de van der Schueren MAE, van Leeuwen PAM, Kuik DJ et al. The impact of nutritional status on the prognoses of patients with advanced head and neck cancer. Cancer 1999; 86: 519-527. doi:10.1002/(sici)1097-0142(19990801)86:3<519::Aid-cncr22>3.0.Co;2-s
- 60. Weimann A, Braga M, Harsanyi L et al. ESPEN Guidelines on Enteral Nutrition: Surgery including organ transplantation. Clin Nutr 2006; 25: 224-244. doi:10.1016/j.clnu.2006.01.015
- 61. Weimann A, Ebener C, Holland-Cunz S et al. Surgery and transplantation—Guidelines on parenteral nutrition, Chapter 18. GMS German Medical Science 2009; 7
- 62. Banning LBD, Ter Beek L, El Moumni M et al. Vascular Surgery Patients at Risk for Malnutrition Are at an Increased Risk of Developing Postoperative Complications. Ann Vasc Surg 2020; 64: 213-220. doi:10.1016/j.avsg.2019.10.037
- 63. Skeie E, Tangvik RJ, Nymo LS et al. Weight loss and BMI criteria in GLIM's definition of malnutrition is associated with postoperative complications following abdominal resections Results from a National Quality Registry. Clin Nutr 2020; 39: 1593-1599. doi:10.1016/j.clnu.2019.07.003
- 64. Bollschweiler E, Schroder W, Holscher AH et al. Preoperative risk analysis in patients with adenocarcinoma or squamous cell carcinoma of the oesophagus. Br J Surg 2000; 87: 1106-1110. doi:10.1046/j.1365-2168.2000.01474.x
- 65. Correia MI, Caiaffa WT, da Silva AL et al. Risk factors for malnutrition in patients undergoing gastroenterological and hernia surgery: an analysis of 374 patients. Nutr Hosp 2001; 16: 59-64
- 66. Haugen M, Homme KA, Reigstad A et al. Assessment of nutritional status in patients with rheumatoid arthritis and osteoarthritis undergoing joint

- replacement surgery. Arthritis Care Res 1999; 12: 26-32. doi:10.1002/1529-0131(199902)12:1<26::aid-art5>3.0.co;2-#
- 67. Lumbers M, New SA, Gibson S et al. Nutritional status in elderly female hip fracture patients: comparison with an age-matched home living group attending day centres. Br J Nutr 2001; 85: 733-740. doi:10.1079/bjn2001350
- 68. Merli M, Giusto M, Gentili F et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation. Liver Int 2010; 30: 208-214. doi:10.1111/j.1478-3231.2009.02135.x
- 69. Padillo FJ, Andicoberry B, Muntane J et al. Factors predicting nutritional derangements in patients with obstructive jaundice: multivariate analysis. World J Surg 2001; 25: 413-418. doi:10.1007/s002680020043
- 70. Saito T, Kuwahara A, Shigemitsu Y et al. Factors related to malnutrition in patients with esophageal cancer. Nutrition 1991; 7: 117-121
- 71. Takagi K, Yamamori H, Morishima Y et al. Preoperative immunosuppression: its relationship with high morbidity and mortality in patients receiving thoracic esophagectomy. Nutrition 2001; 17: 13-17. doi:10.1016/s0899-9007(00)00504-9
- 72. Weimann A, Meyer HJ, Muller MJ et al. [Significance of preoperative weight loss for perioperative metabolic adaptation and surgical risk in patients with tumors of the upper gastrointestinal tract]. Langenbecks Arch Chir 1992; 377: 45-52. doi:10.1007/BF00186148
- 73. Gupta D, Vashi PG, Lammersfeld CA et al. Role of nutritional status in predicting the length of stay in cancer: a systematic review of the epidemiological literature. Ann Nutr Metab 2011; 59: 96-106. doi:10.1159/000332914
- 74. Figueiredo F, Dickson ER, Pasha T et al. Impact of nutritional status on outcomes after liver transplantation. Transplantation 2000; 70: 1347-1352. doi:10.1097/00007890-200011150-00014
- 75. Moukarzel AA, Najm I, Vargas J et al. Effect of nutritional status on outcome of orthotopic liver transplantation in pediatric patients. Transplant Proc 1990; 22: 1560-1563
- 76. Muller MJ, Lautz HU, Plogmann B et al. Energy expenditure and substrate oxidation in patients with cirrhosis: the impact of cause, clinical staging and nutritional state. Hepatology 1992; 15: 782-794. doi:10.1002/hep.1840150507
- 77. Plöchl W, Pezawas L, Hiesmayr M et al. Nutritional status, ICU duration and ICU mortality in lung transplant recipients. Intensive Care Med 1996; 22: 1179-1185
- 78. Roggero P, Cataliotti E, Ulla L et al. Factors influencing malnutrition in children waiting for liver transplants. Am J Clin Nutr 1997; 65: 1852-1857. doi:10.1093/ajcn/65.6.1852
- 79. Schwebel C, Pin I, Barnoud D et al. Prevalence and consequences of nutritional depletion in lung transplant candidates. Eur Respir J 2000; 16: 1050-1055. doi:10.1034/j.1399-3003.2000.16f05.x
- 80. Selberg O, Bottcher J, Tusch G et al. Identification of high- and low-risk patients before liver transplantation: a prospective cohort study of nutritional and

- metabolic parameters in 150 patients. Hepatology 1997; 25: 652-657. doi:10.1002/hep.510250327
- 81. Shaw BW, Jr., Wood RP, Gordon RD et al. Influence of selected patient variables and operative blood loss on six-month survival following liver transplantation. Semin Liver Dis 1985; 5: 385-393. doi:10.1055/s-2008-1040637
- 82. Stephenson GR, Moretti EW, El-Moalem H et al. Malnutrition in liver transplant patients: preoperative subjective global assessment is predictive of outcome after liver transplantation. Transplantation 2001; 72: 666-670. doi:10.1097/00007890-200108270-00018
- 83. Chang K-V, Chen J-D, Wu W-T et al. Association of loss of muscle mass with mortality in liver cirrhosis without or before liver transplantation: A systematic review and meta-analysis. Medicine 2019; 98
- 84. Hiesmayr M, Schindler K, Pernicka E et al. Decreased food intake is a risk factor for mortality in hospitalised patients: the NutritionDay survey 2006. Clin Nutr 2009; 28: 484-491. doi:10.1016/j.clnu.2009.05.013
- 85. Sorensen J, Kondrup J, Prokopowicz J et al. EuroOOPS: an international, multicentre study to implement nutritional risk screening and evaluate clinical outcome. Clin Nutr 2008; 27: 340-349. doi:10.1016/j.clnu.2008.03.012
- 86. Linn BS, Robinson DS, Klimas NG. Effects of age and nutritional status on surgical outcomes in head and neck cancer. Ann Surg 1988; 207: 267-273. doi:10.1097/00000658-198803000-00008
- 87. Kondrup J, Allison SP, Elia M et al. ESPEN guidelines for nutrition screening 2002. Clin Nutr 2003; 22: 415-421. doi:10.1016/s0261-5614(03)00098-0
- 88. Schwegler I, von Holzen A, Gutzwiller JP et al. Nutritional risk is a clinical predictor of postoperative mortality and morbidity in surgery for colorectal cancer. Br J Surg 2010; 97: 92-97. doi:10.1002/bjs.6805
- 89. Detsky AS, McLaughlin JR, Baker JP et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr 1987; 11: 8-13. doi:10.1177/014860718701100108
- 90. Cederholm T, Barazzoni R, Austin P et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 2017; 36: 49-64. doi:10.1016/j.clnu.2016.09.004
- 91. Kuppinger D, Hartl WH, Bertok M et al. Nutritional screening for risk prediction in patients scheduled for abdominal operations. Br J Surg 2012; 99: 728-737. doi:10.1002/bjs.8710
- 92. van Stijn MF, Korkic-Halilovic I, Bakker MS et al. Preoperative nutrition status and postoperative outcome in elderly general surgery patients: a systematic review. JPEN J Parenter Enteral Nutr 2013; 37: 37-43. doi:10.1177/0148607112445900
- 93. [Anonym]. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: a report by the American

- Society of Anesthesiologist Task Force on Preoperative Fasting. Anesthesiology 1999; 90: 896-905. doi:10.1097/00000542-199903000-00034
- 94. Bisgaard T, Kristiansen VB, Hjortso NC et al. Randomized clinical trial comparing an oral carbohydrate beverage with placebo before laparoscopic cholecystectomy. Br J Surg 2004; 91: 151-158. doi:10.1002/bjs.4412
- 95. Li S, Zhang J, Zheng H et al. Prognostic Role of Serum Albumin, Total Lymphocyte Count, and Mini Nutritional Assessment on Outcomes After Geriatric Hip Fracture Surgery: A Meta-Analysis and Systematic Review. J Arthroplasty 2019; 34: 1287-1296. doi:10.1016/j.arth.2019.02.003
- 96. Wischmeyer PE, Carli F, Evans DC et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Nutrition Screening and Therapy Within a Surgical Enhanced Recovery Pathway. Anesth Analg 2018; 126: 1883-1895. doi:10.1213/ANE.00000000000002743
- 97. Cederholm T, Bosaeus I, Barazzoni R et al. Diagnostic criteria for malnutrition An ESPEN Consensus Statement. Clin Nutr 2015; 34: 335-340. doi:10.1016/j.clnu.2015.03.001
- 98. Jensen GL, Cederholm T, Correia M et al. GLIM Criteria for the Diagnosis of Malnutrition: A Consensus Report From the Global Clinical Nutrition Community. JPEN J Parenter Enteral Nutr 2019; 43: 32-40. doi:10.1002/jpen.1440
- 99. Brady M, Kinn S, Stuart P. Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev 2003. doi:10.1002/14651858.CD004423: CD004423. doi:10.1002/14651858.CD004423
- 100. Bruning PF, Halling A, Hilgers FJ et al. Postoperative nasogastric tube feeding in patients with head and neck cancer: a prospective assessment of nutritional status and well-being. Eur J Cancer Clin Oncol 1988; 24: 181-188. doi:10.1016/0277-5379(88)90250-7
- 101. Hamaoui E, Lefkowitz R, Olender L et al. Enteral nutrition in the early postoperative period: a new semi-elemental formula versus total parenteral nutrition. JPEN J Parenter Enteral Nutr 1990; 14: 501-507. doi:10.1177/0148607190014005501
- 102. Hammerlid E, Wirblad B, Sandin C et al. Malnutrition and food intake in relation to quality of life in head and neck cancer patients. Head Neck 1998; 20: 540-548. doi:10.1002/(sici)1097-0347(199809)20:6<540::aid-hed9>3.0.co;2-j
- 103. Hedberg AM, Lairson DR, Aday LA et al. Economic implications of an early postoperative enteral feeding protocol. J Am Diet Assoc 1999; 99: 802-807. doi:10.1016/S0002-8223(99)00191-1
- 104. Kornowski A, Cosnes J, Gendre JP et al. Enteral nutrition in malnutrition following gastric resection and cephalic pancreaticoduodenectomy. Hepatogastroenterology 1992; 39: 9-13
- Mochizuki H, Togo S, Tanaka K et al. Early enteral nutrition after hepatectomy to prevent postoperative infection. Hepatogastroenterology 2000; 47: 1407-1410

- 106. Moore FA, Feliciano DV, Andrassy RJ et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg 1992; 216: 172-183. doi:10.1097/00000658-199208000-00008
- 107. Neumayer LA, Smout RJ, Horn HG et al. Early and sufficient feeding reduces length of stay and charges in surgical patients. J Surg Res 2001; 95: 73-77. doi:10.1006/jsre.2000.6047
- Shaw-Stiffel TA, Zarny LA, Pleban WE et al. Effect of nutrition status and other factors on length of hospital stay after major gastrointestinal surgery. Nutrition 1993; 9: 140-145
- 109. Velez JP, Lince LF, Restrepo JI. Early enteral nutrition in gastrointestinal surgery: a pilot study. Nutrition 1997; 13: 442-445. doi:10.1016/s0899-9007(97)91283-1
- 110. Weimann A, Selberg O, Schuster HP et al. Kriterien der Überwachung und des Erfolgs einer künstlichen Ernährung ? Loccumer Gespräche 1997. Intensivmedizin und Notfallmedizin 1997; 34: 744-748. doi:10.1007/s003900050099
- 111. Weimann A, Müller MJ, von Herz U et al. Lebensqualität als Kriterium des Erfolgs einer künstlichen Ernährung. Intensivmedizin und Notfallmedizin 1998; 35: 724-726. doi:10.1007/s003900050200
- 112. Weimann A. Sinnvolle Ziele für eine Ernährungstherapie beim Tumorpatienten. Aktuelle Ernährungsmedizin 2001; 26: 167-169. doi:10.1055/s-2001-16667
- 113. Zhang B, Najarali Z, Ruo L et al. Effect of Perioperative Nutritional Supplementation on Postoperative Complications—Systematic Review and Meta-Analysis. J Gastrointest Surg 2019. 1-12
- 114. Rinninella E, Cintoni M, Raoul P et al. Effects of nutritional interventions on nutritional status in patients with gastric cancer: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2020; 38: 28-42. doi:10.1016/j.clnesp.2020.05.007
- 115. Gerritsen A, Besselink MG, Cieslak KP et al. Efficacy and complications of nasojejunal, jejunostomy and parenteral feeding after pancreaticoduodenectomy. J Gastrointest Surg 2012; 16: 1144-1151. doi:10.1007/s11605-012-1887-5
- 116. Lobo DN, Hendry PO, Rodrigues G et al. Gastric emptying of three liquid oral preoperative metabolic preconditioning regimens measured by magnetic resonance imaging in healthy adult volunteers: a randomised double-blind, crossover study. Clin Nutr 2009; 28: 636-641. doi:10.1016/j.clnu.2009.05.002
- 117. Lambert E, Carey S. Practice Guideline Recommendations on Perioperative Fasting: A Systematic Review. JPEN J Parenter Enteral Nutr 2016; 40: 1158-1165. doi:10.1177/0148607114567713
- 118. Soreide E, Fasting S, Raeder J. New preoperative fasting guidelines in Norway.

 Acta Anaesthesiol Scand 1997; 41: 799. doi:10.1111/j.1399-6576.1997.tb04789.x

- 119. Spies CD, Breuer JP, Gust R et al. [Preoperative fasting. An update]. Anaesthesist 2003; 52: 1039-1045. doi:10.1007/s00101-003-0573-0
- 120. Yuill KA, Richardson RA, Davidson HI et al. The administration of an oral carbohydrate-containing fluid prior to major elective upper-gastrointestinal surgery preserves skeletal muscle mass postoperatively--a randomised clinical trial. Clin Nutr 2005; 24: 32-37. doi:10.1016/j.clnu.2004.06.009
- Amer MA, Smith MD, Herbison GP et al. Network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery. Br J Surg 2017; 104: 187-197. doi:10.1002/bjs.10408
- 122. Yagci G, Can MF, Ozturk E et al. Effects of preoperative carbohydrate loading on glucose metabolism and gastric contents in patients undergoing moderate surgery: a randomized, controlled trial. Nutrition 2008; 24: 212-216. doi:10.1016/j.nut.2007.11.003
- 123. Tudor-Drobjewski BA, Marhofer P, Kimberger O et al. Randomised controlled trial comparing preoperative carbohydrate loading with standard fasting in paediatric anaesthesia. Br J Anaesth 2018; 121: 656-661. doi:10.1016/j.bja.2018.04.040
- 124. Breuer JP, von Dossow V, von Heymann C et al. Preoperative oral carbohydrate administration to ASA III-IV patients undergoing elective cardiac surgery. Anesth Analg 2006; 103: 1099-1108. doi:10.1213/01.ane.0000237415.18715.1d
- 125. Jarvela K, Maaranen P, Sisto T. Pre-operative oral carbohydrate treatment before coronary artery bypass surgery. Acta Anaesthesiol Scand 2008; 52: 793-797. doi:10.1111/j.1399-6576.2008.01660.x
- 126. Bisgaard T, Kehlet H. Letter: Randomized clinical trial of the effects of oral preoperative carbohydrates on postoperative nausea and vomiting after laparoscopic cholecystectomy (Br J Surg 2005; 92: 415-421). Br J Surg 2006; 93: 120; author reply 120. doi:10.1002/bjs.5291
- 127. Lee JS, Song Y, Kim JY et al. Effects of Preoperative Oral Carbohydrates on Quality of Recovery in Laparoscopic Cholecystectomy: A Randomized, Double Blind, Placebo-Controlled Trial. World J Surg 2018; 42: 3150-3157. doi:10.1007/s00268-018-4717-4
- 129. Bopp C, Hofer S, Klein A et al. A liberal preoperative fasting regimen improves patient comfort and satisfaction with anesthesia care in day-stay minor surgery. Minerva Anestesiol 2011; 77: 680-686
- 130. Hausel J, Nygren J, Lagerkranser M et al. A carbohydrate-rich drink reduces preoperative discomfort in elective surgery patients. Anesth Analg 2001; 93: 1344-1350. doi:10.1097/00000539-200111000-00063
- 131. Kaska M, Grosmanova T, Havel E et al. The impact and safety of preoperative oral or intravenous carbohydrate administration versus fasting in colorectal

- surgery--a randomized controlled trial. Wien Klin Wochenschr 2010; 122: 23-30. doi:10.1007/s00508-009-1291-7
- 132. Meisner M, Ernhofer U, Schmidt J. [Liberalisation of preoperative fasting guidelines: effects on patient comfort and clinical practicability during elective laparoscopic surgery of the lower abdomen]. Zentralbl Chir 2008; 133: 479-485. doi:10.1055/s-2008-1076906
- 133. Rapp-Kesek D, Stridsberg M, Andersson LG et al. Insulin resistance after cardiopulmonary bypass in the elderly patient. Scand Cardiovasc J 2007; 41: 102-108. doi:10.1080/14017430601050355
- 134. Onalan E, Andsoy, II, Ersoy OF. The Effect of Preoperative Oral Carbohydrate Administration on Insulin Resistance and Comfort Level in Patients Undergoing Surgery. J Perianesth Nurs 2019; 34: 539-550. doi:10.1016/j.jopan.2018.07.007
- 135. Mizock BA. Blood glucose management during critical illness. Rev Endocr Metab Disord 2003; 4: 187-194. doi:10.1023/a:1022998204978
- 136. Ljungqvist O, Soreide E. Preoperative fasting. Br J Surg 2003; 90: 400-406. doi:10.1002/bjs.4066
- 137. Soop M, Nygren J, Thorell A et al. Preoperative oral carbohydrate treatment attenuates endogenous glucose release 3 days after surgery. Clin Nutr 2004; 23: 733-741. doi:10.1016/j.clnu.2003.12.007
- 138. Nygren J, Soop M, Thorell A et al. Preoperative oral carbohydrate administration reduces postoperative insulin resistance. Clin Nutr 1998; 17: 65-71. doi:10.1016/s0261-5614(98)80307-5
- 139. Hamamoto H, Yamamoto M, Masubuchi S et al. The impact of preoperative carbohydrate loading on intraoperative body temperature: a randomized controlled clinical trial. Surg Endosc 2018; 32: 4393-4401. doi:10.1007/s00464-018-6273-2
- 140. Rizvanovic N, Nesek Adam V, Causevic S et al. A randomised controlled study of preoperative oral carbohydrate loading versus fasting in patients undergoing colorectal surgery. Int J Colorectal Dis 2019; 34: 1551-1561. doi:10.1007/s00384-019-03349-4
- 141. Dock-Nascimento DB, de Aguilar-Nascimento JE, Magalhaes Faria MS et al. Evaluation of the effects of a preoperative 2-hour fast with maltodextrine and glutamine on insulin resistance, acute-phase response, nitrogen balance, and serum glutathione after laparoscopic cholecystectomy: a controlled randomized trial. JPEN J Parenter Enteral Nutr 2012; 36: 43-52. doi:10.1177/0148607111422719
- 142. Braga M, Bissolati M, Rocchetti S et al. Oral preoperative antioxidants in pancreatic surgery: a double-blind, randomized, clinical trial. Nutrition 2012; 28: 160-164. doi:10.1016/j.nut.2011.05.014
- 143. Vermeulen MA, Richir MC, Garretsen MK et al. Gastric emptying, glucose metabolism and gut hormones: evaluation of a common preoperative carbohydrate beverage. Nutrition 2011; 27: 897-903. doi:10.1016/j.nut.2010.10.001

- 144. Gutch M, Kumar S, Razi SM et al. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab 2015; 19: 160-164. doi:10.4103/2230-8210.146874
- 145. Mathur S, Plank LD, McCall JL et al. Randomized controlled trial of preoperative oral carbohydrate treatment in major abdominal surgery. Br J Surg 2010; 97: 485-494. doi:10.1002/bjs.7026
- 146. Gianotti L, Biffi R, Sandini M et al. Preoperative Oral Carbohydrate Load Versus Placebo in Major Elective Abdominal Surgery (PROCY): A Randomized, Placebo-controlled, Multicenter, Phase III Trial. Ann Surg 2018; 267: 623-630. doi:10.1097/SLA.0000000000002325
- 147. Noblett SE, Watson DS, Huong H et al. Pre-operative oral carbohydrate loading in colorectal surgery: a randomized controlled trial. Colorectal Dis 2006; 8: 563-569. doi:10.1111/j.1463-1318.2006.00965.x
- 148. Awad S, Varadhan KK, Ljungqvist O et al. A meta-analysis of randomised controlled trials on preoperative oral carbohydrate treatment in elective surgery. Clin Nutr 2013; 32: 34-44. doi:10.1016/j.clnu.2012.10.011
- 149. Smith MD, McCall J, Plank L et al. Preoperative carbohydrate treatment for enhancing recovery after elective surgery. Cochrane Database Syst Rev 2014. doi:10.1002/14651858.CD009161.pub2: CD009161. doi:10.1002/14651858.CD009161.pub2
- 150. Noba L, Wakefield A. Are carbohydrate drinks more effective than preoperative fasting: A systematic review of randomised controlled trials. J Clin Nurs 2019; 28: 3096-3116. doi:10.1111/jocn.14919
- 151. Pachella LA, Mehran RJ, Curtin K et al. Preoperative Carbohydrate Loading in Patients Undergoing Thoracic Surgery: A Quality-Improvement Project. J Perianesth Nurs 2019; 34: 1250-1256. doi:10.1016/j.jopan.2019.05.007
- 152. Suh S, Hetzel E, Alter-Troilo K et al. The influence of preoperative carbohydrate loading on postoperative outcomes in bariatric surgery patients: a randomized, controlled trial. Surg Obes Relat Dis 2021; 17: 1480-1488. doi:10.1016/j.soard.2021.04.014
- 153. Cakar E, Yilmaz E, Cakar E et al. The Effect of Preoperative Oral Carbohydrate Solution Intake on Patient Comfort: A Randomized Controlled Study. J Perianesth Nurs 2017; 32: 589-599. doi:10.1016/j.jopan.2016.03.008
- 154. Doo AR, Hwang H, Ki MJ et al. Effects of preoperative oral carbohydrate administration on patient well-being and satisfaction in thyroid surgery. Korean J Anesthesiol 2018; 71: 394-400. doi:10.4097/kja.d.18.27143
- 155. Wendling AL, Byun SY, Koenig M et al. Impact of oral carbohydrate consumption prior to cesarean delivery on preoperative well-being: a randomized interventional study. Arch Gynecol Obstet 2020; 301: 179-187. doi:10.1007/s00404-020-05455-z
- 156. Yi HC, Ibrahim Z, Abu Zaid Z et al. Impact of Enhanced Recovery after Surgery with Preoperative Whey Protein-Infused Carbohydrate Loading and Postoperative Early Oral Feeding among Surgical Gynecologic Cancer Patients: An Open-Labelled Randomized Controlled Trial. Nutrients 2020; 12: 264. doi:10.3390/nu12010264

- 157. Lende TH, Austdal M, Bathen TF et al. Metabolic consequences of perioperative oral carbohydrates in breast cancer patients an explorative study. BMC Cancer 2019; 19: 1183. doi:10.1186/s12885-019-6393-7
- 158. Faruk Savluk O, Guzelmeric F, Kuscu MA et al. Does preoperative oral carbohydrate intake improve postoperative outcomes in patients undergoing coronary artery bypass grafts? J Cardiothorac Vasc Anesth 2017; 31: S58-S59. doi:10.1053/j.jvca.2017.02.137
- 159. Chen X, Li K, Yang K et al. Effects of preoperative oral single-dose and double-dose carbohydrates on insulin resistance in patients undergoing gastrectomy:a prospective randomized controlled trial. Clin Nutr 2021; 40: 1596-1603. doi:10.1016/j.clnu.2021.03.002
- 160. Ricci C, Ingaldi C, Alberici L et al. Preoperative carbohydrate loading before elective abdominal surgery: A systematic review and network meta-analysis of phase II/III randomized controlled trials. Clin Nutr 2022; 41: 313-320. doi:10.1016/j.clnu.2021.12.016
- 161. Bickel A, Shtamler B, Mizrahi S. Early oral feeding following removal of nasogastric tube in gastrointestinal operations. A randomized prospective study. Arch Surg 1992; 127: 287-289; discussion 289. doi:10.1001/archsurg.1992.01420030049009
- 162. Elmore MF, Gallagher SC, Jones JG et al. Esophagogastric decompression and enteral feeding following cholecystectomy: a controlled, randomized prospective trial. JPEN J Parenter Enteral Nutr 1989; 13: 377-381. doi:10.1177/0148607189013004377
- Petrelli NJ, Stulc JP, Rodriguez-Bigas M et al. Nasogastric decompression following elective colorectal surgery: a prospective randomized study. Am Surg 1993; 59: 632-635
- 164. Feo CV, Romanini B, Sortini D et al. Early oral feeding after colorectal resection: a randomized controlled study. ANZ J Surg 2004; 74: 298-301. doi:10.1111/j.1445-1433.2004.02985.x
- 165. Lassen K, Kjaeve J, Fetveit T et al. Allowing normal food at will after major upper gastrointestinal surgery does not increase morbidity: a randomized multicenter trial. Ann Surg 2008; 247: 721-729. doi:10.1097/SLA.0b013e31815cca68
- 166. Reissman P, Teoh TA, Cohen SM et al. Is early oral feeding safe after elective colorectal surgery? A prospective randomized trial. Ann Surg 1995; 222: 73-77. doi:10.1097/00000658-199507000-00012
- 167. Nematihonar B, Salimi S, Noorian V et al. Early Versus Delayed (Traditional) Postoperative Oral Feeding in Patients Undergoing Colorectal Anastomosis. Adv Biomed Res 2018; 7: 30. doi:10.4103/abr.abr 290 16
- 168. Lewis SJ, Egger M, Sylvester PA et al. Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ 2001; 323: 773-776. doi:10.1136/bmj.323.7316.773
- 169. Barlow R, Price P, Reid TD et al. Prospective multicentre randomised controlled trial of early enteral nutrition for patients undergoing major upper gastrointestinal surgical resection. Clin Nutr 2011; 30: 560-566. doi:10.1016/j.clnu.2011.02.006

- 170. Wu JM, Kuo TC, Chen HA et al. Randomized trial of oral versus enteral feeding for patients with postoperative pancreatic fistula after pancreatoduodenectomy. Br J Surg 2019; 106: 190-198. doi:10.1002/bjs.11087
- 171. Smeets BJJ, Peters EG, Horsten ECJ et al. Effect of Early vs Late Start of Oral Intake on Anastomotic Leakage Following Elective Lower Intestinal Surgery: A Systematic Review. Nutr Clin Pract 2018; 33: 803-812. doi:10.1177/0884533617711128
- 172. Mazaki T, Ebisawa K. Enteral versus parenteral nutrition after gastrointestinal surgery: a systematic review and meta-analysis of randomized controlled trials in the English literature. J Gastrointest Surg 2008; 12: 739-755. doi:10.1007/s11605-007-0362-1
- 173. Herbert G, Perry R, Andersen HK et al. Early enteral nutrition within 24 hours of lower gastrointestinal surgery versus later commencement for length of hospital stay and postoperative complications. Cochrane Database Syst Rev 2019; 7: Cd004080. doi:10.1002/14651858.CD004080.pub4
- 174. Osland E, Yunus RM, Khan S et al. Early versus traditional postoperative feeding in patients undergoing resectional gastrointestinal surgery: a meta-analysis. JPEN J Parenter Enteral Nutr 2011; 35: 473-487. doi:10.1177/0148607110385698
- 175. Zeng S, Xue Y, Zhao J et al. Total parenteral nutrition versus early enteral nutrition after cystectomy: a meta-analysis of postoperative outcomes. Int Urol Nephrol 2019; 51: 1-7. doi:10.1007/s11255-018-2031-6
- 176. Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg 2009; 13: 569
- 177. Gianotti L, Nespoli L, Torselli L et al. Safety, feasibility, and tolerance of early oral feeding after colorectal resection outside an enhanced recovery after surgery (ERAS) program. Int J Colorectal Dis 2011; 26: 747-753. doi:10.1007/s00384-011-1138-3
- 178. Gatt M, Khan S, MacFie J. In response to: Varadhan KK, Neal KR, Dejong CH, Fearon KC, Ljungqvist O, Lobo DN. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. Clin Nutr 29 (2010) 434-440. Clin Nutr 2010; 29: 689-690; author reply 691-682. doi:10.1016/j.clnu.2010.06.005
- 179. Sun HB, Li Y, Liu XB et al. Impact of an Early Oral Feeding Protocol on Inflammatory Cytokine Changes After Esophagectomy. Ann Thorac Surg 2019; 107: 912-920. doi:10.1016/j.athoracsur.2018.09.048
- 180. Carrere N, Seulin P, Julio CH et al. Is nasogastric or nasojejunal decompression necessary after gastrectomy? A prospective randomized trial. World J Surg 2007; 31: 122-127. doi:10.1007/s00268-006-0430-9
- 181. Willcutts KF, Chung MC, Erenberg CL et al. Early Oral Feeding as Compared With Traditional Timing of Oral Feeding After Upper Gastrointestinal Surgery: A Systematic Review and Meta-analysis. Ann Surg 2016; 264: 54-63. doi:10.1097/SLA.0000000000001644

- 182. Zheng R, Devin CL, Pucci MJ et al. Optimal timing and route of nutritional support after esophagectomy: A review of the literature. World J Gastroenterol 2019; 25: 4427-4436. doi:10.3748/wjg.v25.i31.4427
- 183. Sun HB, Li Y, Liu XB et al. Early Oral Feeding Following McKeown Minimally Invasive Esophagectomy: An Open-label, Randomized. Controlled. 2018; Noninferiority Trial. Ann Surg 267: 435-442. doi:10.1097/sla.0000000000002304
- 184. Berkelmans GHK, Fransen LFC, Dolmans-Zwartjes ACP et al. Direct Oral Feeding Following Minimally Invasive Esophagectomy (NUTRIENT II trial): An International, Multicenter, Open-label Randomized Controlled Trial. Ann Surg 2020; 271: 41-47. doi:10.1097/SLA.000000000003278
- 185. Zhang C, Zhang M, Gong L et al. The effect of early oral feeding after esophagectomy on the incidence of anastomotic leakage: an updated review. Postgrad Med 2020; 132: 419-425. doi:10.1080/00325481.2020.1734342
- 186. Mahmoodzadeh H, Shoar S, Sirati F et al. Early initiation of oral feeding following upper gastrointestinal tumor surgery: a randomized controlled trial. Surg Today 2015; 45: 203-208. doi:10.1007/s00595-014-0937-x
- 187. Sun HB, Liu XB, Zhang RX et al. Early oral feeding following thoracolaparoscopic oesophagectomy for oesophageal cancer. Eur J Cardiothorac Surg 2015; 47: 227-233. doi:10.1093/ejcts/ezu168
- 188. Speicher JE, Gunn TM, Rossi NP et al. Delay in Oral Feeding is Associated With a Decrease in Anastomotic Leak Following Transhiatal Esophagectomy. Semin Thorac Cardiovasc Surg 2018; 30: 476-484. doi:10.1053/j.semtcvs.2018.08.004
- 189. Eberhard KE, Achiam MP, Rolff HC et al. Comparison of "Nil by Mouth" Versus Early Oral Intake in Three Different Diet Regimens Following Esophagectomy. World J Surg 2017; 41: 1575-1583. doi:10.1007/s00268-017-3870-5
- 190. Jamel S, Tukanova K, Markar SR. The evolution of fast track protocols after oesophagectomy. J Thorac Dis 2019; 11: S675-S684. doi:10.21037/jtd.2018.11.63
- 191. Liu X-B, Xing W-Q, Sun H-B. Early oral feeding following esophagectomy. J Thorac Dis 2019; 11: S824-S830. doi:10.21037/jtd.2019.01.24
- 192. Schwenk W, Bohm B, Haase O et al. Laparoscopic versus conventional colorectal resection: a prospective randomised study of postoperative ileus and early postoperative feeding. Langenbecks Arch Surg 1998; 383: 49-55. doi:10.1007/s004230050091
- 193. Fujii T, Nakao A, Murotani K et al. Influence of Food Intake on the Healing Process of Postoperative Pancreatic Fistula After Pancreatoduodenectomy: A Multi-institutional Randomized Controlled Trial. Ann Surg Oncol 2015; 22: 3905-3912. doi:10.1245/s10434-015-4496-1
- 194. Bardram L, Funch-Jensen P, Kehlet H. Rapid rehabilitation in elderly patients after laparoscopic colonic resection. Br J Surg 2000; 87: 1540-1545. doi:10.1046/j.1365-2168.2000.01559.x

- 195. Chen HH, Wexner SD, Iroatulam AJ et al. Laparoscopic colectomy compares favorably with colectomy by laparotomy for reduction of postoperative ileus. Dis Colon Rectum 2000; 43: 61-65. doi:10.1007/BF02237245
- 196. Basse L, Jakobsen DH, Bardram L et al. Functional recovery after open versus laparoscopic colonic resection: a randomized, blinded study. Ann Surg 2005; 241: 416-423. doi:10.1097/01.sla.0000154149.85506.36
- 197. Vlug MS, Wind J, Hollmann MW et al. Laparoscopy in combination with fast track multimodal management is the best perioperative strategy in patients undergoing colonic surgery: a randomized clinical trial (LAFA-study). Ann Surg 2011; 254: 868-875. doi:10.1097/SLA.0b013e31821fd1ce
- 198. Spanjersberg W, Van Sambeeck J, Bremers A et al. Systematic review and meta-analysis for laparoscopic versus open colon surgery with or without an ERAS programme. Surg Endosc 2015; 29: 3443-3453
- 199. Brönnimann S, Studer M, Wagner HE. Frühpostoperative Ernährung nach elektiver Kolonchirurgie. In, Vielfalt und Einheit der Chirurgie Humanität und Wissenschaft: Springer Berlin Heidelberg; 1998: 1094-1095. doi:10.1007/978-3-642-45774-6_246
- 200. Choi J, O'Connell TX. Safe and effective early postoperative feeding and hospital discharge after open colon resection. Am Surg 1996; 62: 853-856
- 201. Detry R, Ciccarelli O, Komlan A et al. Early Feeding after Colorectal Surgery. Preliminary Results. Acta Chir Belg 1999; 99: 292-294. doi:10.1080/00015458.1999.12098499
- 202. Bu J, Li N, Huang X et al. Feasibility of Fast-Track Surgery in Elderly Patients with Gastric Cancer. J Gastrointest Surg 2015; 19: 1391-1398. doi:10.1007/s11605-015-2839-7
- 203. Kalra R, Vohra R, Negi M et al. Feasibility of initiating early enteral nutrition after congenital heart surgery in neonates and infants. Clinical Nutrition ESPEN 2018; 25: 100-102. doi:10.1016/j.clnesp.2018.03.127
- 204. Flordelís Lasierra JL, Pérez-Vela JL, Umezawa Makikado LD et al. Early Enteral Nutrition in Patients With Hemodynamic Failure Following Cardiac Surgery. Journal of Parenteral and Enteral Nutrition 2013; 39: 154-162. doi:10.1177/0148607113504219
- 205. Bozzetti F, Mariani L. Perioperative nutritional support of patients undergoing pancreatic surgery in the age of ERAS. Nutrition 2014; 30: 1267-1271. doi:10.1016/j.nut.2014.03.002
- 206. Reintam Blaser A, Starkopf J, Alhazzani W et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med 2017; 43: 380-398. doi:10.1007/s00134-016-4665-0
- 207. Malone DL, Genuit T, Tracy JK et al. Surgical site infections: reanalysis of risk factors. J Surg Res 2002; 103: 89-95. doi:10.1006/jsre.2001.6343
- 208. van Bokhorst-de van der Schueren MAE, van Leeuwen PAM, Sauerwein HP et al. Assessment of malnutrition parameters in head and neck cancer and their relation to postoperative complications. Head Neck 1997; 19: 419-425. doi:10.1002/(sici)1097-0347(199708)19:5<419::Aid-hed9>3.0.Co;2-2

- 209. Gu A, Malahias MA, Strigelli V et al. Preoperative Malnutrition Negatively Correlates With Postoperative Wound Complications and Infection After Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. J Arthroplasty 2019; 34: 1013-1024. doi:10.1016/j.arth.2019.01.005
- 210. Sandstrom R, Drott C, Hyltander A et al. The effect of postoperative intravenous feeding (TPN) on outcome following major surgery evaluated in a randomized study. Ann Surg 1993; 217: 185-195. doi:10.1097/00000658-199302000-00013
- 211. Braga M, Ljungqvist O, Soeters P et al. ESPEN Guidelines on Parenteral Nutrition: surgery. Clin Nutr 2009; 28: 378-386. doi:10.1016/j.clnu.2009.04.002
- 212. Bozzetti F, Gianotti L, Braga M et al. Postoperative complications in gastrointestinal cancer patients: the joint role of the nutritional status and the nutritional support. Clin Nutr 2007; 26: 698-709. doi:10.1016/j.clnu.2007.06.009
- 213. Durkin MT, Mercer KG, McNulty MF et al. Vascular surgical society of great britain and ireland: contribution of malnutrition to postoperative morbidity in vascular surgical patients. Br J Surg 1999; 86: 702. doi:10.1046/j.1365-2168.1999.0702a.x
- 214. Pikul J, Sharpe MD, Lowndes R et al. Degree of preoperative malnutrition is predictive of postoperative morbidity and mortality in liver transplant recipients. Transplantation 1994; 57: 469-472. doi:10.1097/00007890-199402150-00030
- 215. Meyer L, Meyer F, Dralle H et al. Insufficiency risk of esophagojejunal anastomosis after total abdominal gastrectomy for gastric carcinoma. Langenbecks Arch Surg 2005; 390: 510-516. doi:10.1007/s00423-005-0575-2
- 216. Adams S, Dellinger EP, Wertz MJ et al. Enteral versus parenteral nutritional support following laparotomy for trauma: a randomized prospective trial. J Trauma 1986; 26: 882-891. doi:10.1097/00005373-198610000-00004
- 217. Baigrie RJ, Devitt PG, Watkin DS. Enteral versus parenteral nutrition after oesophagogastric surgery: a prospective randomized comparison. Aust N Z J Surg 1996; 66: 668-670. doi:10.1111/j.1445-2197.1996.tb00714.x
- 218. Bastow MD, Rawlings J, Allison SP. Benefits of supplementary tube feeding after fractured neck of femur: a randomised controlled trial. Br Med J (Clin Res Ed) 1983; 287: 1589-1592. doi:10.1136/bmj.287.6405.1589
- 219. Beattie AH, Prach AT, Baxter JP et al. A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively in malnourished surgical patients. Gut 2000; 46: 813-818. doi:10.1136/gut.46.6.813
- 220. Beier-Holgersen R, Boesby S. Influence of postoperative enteral nutrition on postsurgical infections. Gut 1996; 39: 833-835. doi:10.1136/gut.39.6.833
- 221. Bower RH, Talamini MA, Sax HC et al. Postoperative enteral vs parenteral nutrition. A randomized controlled trial. Arch Surg 1986; 121: 1040-1045. doi:10.1001/archsurg.1986.01400090070011
- 222. Bozzetti F, Braga M, Gianotti L et al. Postoperative enteral versus parenteral nutrition in malnourished patients with gastrointestinal cancer: a randomised multicentre trial. Lancet 2001; 358: 1487-1492. doi:10.1016/S0140-6736(01)06578-3

- 223. Braga M, Gianotti L, Gentilini O et al. Early postoperative enteral nutrition improves gut oxygenation and reduces costs compared with total parenteral nutrition. Crit Care Med 2001; 29: 242-248. doi:10.1097/00003246-200102000-00003
- 224. Carr CS, Ling KD, Boulos P et al. Randomised trial of safety and efficacy of immediate postoperative enteral feeding in patients undergoing gastrointestinal resection. BMJ 1996; 312: 869-871. doi:10.1136/bmj.312.7035.869
- 225. Delmi M, Rapin CH, Bengoa JM et al. Dietary supplementation in elderly patients with fractured neck of the femur. Lancet 1990; 335: 1013-1016. doi:10.1016/0140-6736(90)91073-j
- 226. Espaulella J, Guyer H, Diaz-Escriu F et al. Nutritional supplementation of elderly hip fracture patients. A randomized, double-blind, placebo-controlled trial. Age Ageing 2000; 29: 425-431. doi:10.1093/ageing/29.5.425
- 227. Iovinelli G, Marsili I, Varrassi G. Nutrition support after total laryngectomy. JPEN J Parenter Enteral Nutr 1993; 17: 445-448. doi:10.1177/0148607193017005445
- 228. Keele AM, Bray MJ, Emery PW et al. Two phase randomised controlled clinical trial of postoperative oral dietary supplements in surgical patients. Gut 1997; 40: 393-399. doi:10.1136/gut.40.3.393
- 229. Kudsk KA, Croce MA, Fabian TC et al. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 1992; 215: 503-511; discussion 511-503. doi:10.1097/00000658-199205000-00013
- 230. MacFie J, Woodcock NP, Palmer MD et al. Oral dietary supplements in pre- and postoperative surgical patients: a prospective and randomized clinical trial. Nutrition 2000; 16: 723-728. doi:10.1016/s0899-9007(00)00377-4
- 231. Mack LA, Kaklamanos IG, Livingstone AS et al. Gastric decompression and enteral feeding through a double-lumen gastrojejunostomy tube improves outcomes after pancreaticoduodenectomy. Ann Surg 2004; 240: 845-851. doi:10.1097/01.sla.0000143299.72623.73
- 232. Malhotra A, Mathur AK, Gupta S. Early enteral nutrition after surgical treatment of gut perforations: a prospective randomised study. J Postgrad Med 2004; 50: 102-106
- 233. Moore FA, Moore EE, Jones TN et al. TEN versus TPN following major abdominal trauma--reduced septic morbidity. J Trauma 1989; 29: 916-922; discussion 922-913. doi:10.1097/00005373-198907000-00003
- 234. Muggia-Sullam M, Bower RH, Murphy RF et al. Postoperative enteral versus parenteral nutritional support in gastrointestinal surgery. A matched prospective study. Am J Surg 1985; 149: 106-112. doi:10.1016/s0002-9610(85)80018-0
- 235. Pacelli F, Bossola M, Papa V et al. Enteral vs parenteral nutrition after major abdominal surgery: an even match. Arch Surg 2001; 136: 933-936. doi:10.1001/archsurg.136.8.933
- 236. Reynolds JV, Kanwar S, Welsh FK et al. 1997 Harry M. Vars Research Award. Does the route of feeding modify gut barrier function and clinical outcome in

- patients after major upper gastrointestinal surgery? JPEN J Parenter Enteral Nutr 1997; 21: 196-201. doi:10.1177/0148607197021004196
- 237. Ryan JA, Jr., Page CP, Babcock L. Early postoperative jejunal feeding of elemental diet in gastrointestinal surgery. Am Surg 1981; 47: 393-403
- 238. Sagar S, Harland P, Shields R. Early postoperative feeding with elemental diet. Br Med J 1979; 1: 293-295. doi:10.1136/bmj.1.6159.293
- 239. Sand J, Luostarinen M, Matikainen M. Enteral or parenteral feeding after total gastrectomy: prospective randomised pilot study. Eur J Surg 1997; 163: 761-766
- 240. Schroeder D, Gillanders L, Mahr K et al. Effects of immediate postoperative enteral nutrition on body composition, muscle function, and wound healing. JPEN J Parenter Enteral Nutr 1991; 15: 376-383. doi:10.1177/0148607191015004376
- 241. Shirabe K, Matsumata T, Shimada M et al. A comparison of parenteral hyperalimentation and early enteral feeding regarding systemic immunity after major hepatic resection--the results of a randomized prospective study. Hepatogastroenterology 1997; 44: 205-209
- 242. Shukla HS, Rao RR, Banu N et al. Enteral hyperalimentation in malnourished surgical patients. Indian J Med Res 1984; 80: 339-346
- 243. Singh G, Ram RP, Khanna SK. Early postoperative enteral feeding in patients with nontraumatic intestinal perforation and peritonitis. J Am Coll Surg 1998; 187: 142-146. doi:10.1016/s1072-7515(98)00154-9
- 244. Smedley F, Bowling T, James M et al. Randomized clinical trial of the effects of preoperative and postoperative oral nutritional supplements on clinical course and cost of care. Br J Surg 2004; 91: 983-990. doi:10.1002/bjs.4578
- 245. Smith RC, Hartemink RJ, Hollinshead JW et al. Fine bore jejunostomy feeding following major abdominal surgery: a controlled randomized clinical trial. Br J Surg 1985; 72: 458-461. doi:10.1002/bjs.1800720619
- 246. Sullivan DH, Nelson CL, Bopp MM et al. Nightly enteral nutrition support of elderly hip fracture patients: a phase I trial. J Am Coll Nutr 1998; 17: 155-161. doi:10.1080/07315724.1998.10718741
- 247. Sullivan DH, Nelson CL, Klimberg VS et al. Nightly enteral nutrition support of elderly hip fracture patients: a pilot study. J Am Coll Nutr 2004; 23: 683-691. doi:10.1080/07315724.2004.10719410
- 248. Von Meyenfeldt MF, Meijerink WJ, Rouflart MM et al. Perioperative nutritional support: a randomised clinical trial. Clin Nutr 1992; 11: 180-186. doi:10.1016/0261-5614(92)90026-m
- 249. Watters JM, Kirkpatrick SM, Norris SB et al. Immediate postoperative enteral feeding results in impaired respiratory mechanics and decreased mobility. Ann Surg 1997; 226: 369-377; discussion 377-380. doi:10.1097/00000658-199709000-00016
- 250. Martignoni ME, Friess H, Sell F et al. Enteral nutrition prolongs delayed gastric emptying in patients after whipple resection. Am J Surg 2000; 180: 18–23. doi:10.1016/s0002-9610(00)00418-9

- 251. Dunham CM, Frankenfield D, Belzberg H et al. Gut failure—predictor of or contributor to mortality in mechanically ventilated blunt trauma patients? J Trauma 1994; 37: 30-34
- 252. Elke G, Hartl WH, Kreymann KG et al. DGEM-Leitlinie: "Klinische Ernährung in der Intensivmedizin". Aktuelle Ernaehrungsmedizin 2018; 43: 341-408
- 253. Beier-Holgersen R, Brandstrup B. Influence of early postoperative enteral nutrition versus placebo on cell-mediated immunity, as measured with the Multitest CMI. Scand J Gastroenterol 1999; 34: 98-102. doi:10.1080/00365529950172907
- 254. Brooks AD, Hochwald SN, Heslin MJ et al. Intestinal permeability after early postoperative enteral nutrition in patients with upper gastrointestinal malignancy. JPEN J Parenter Enteral Nutr 1999; 23: 75-79. doi:10.1177/014860719902300275
- 255. Fletcher JP, Little JM. A comparison of parenteral nutrition and early postoperative enteral feeding on the nitrogen balance after major surgery. Surgery 1986; 100: 21-24
- 256. Hochwald SN, Harrison LE, Heslin MJ et al. Early postoperative enteral feeding improves whole body protein kinetics in upper gastrointestinal cancer patients. Am J Surg 1997; 174: 325-330. doi:10.1016/s0002-9610(97)00095-0
- 257. Hu QG, Zheng QC. The influence of Enteral Nutrition in postoperative patients with poor liver function. World J Gastroenterol 2003; 9: 843-846. doi:10.3748/wjg.v9.i4.843
- 258. Hwang TL, Huang SL, Chen MF. Early nasoduodenal feeding for the post-biliary surgical patient. J Formos Med Assoc 1991; 90: 993-997
- 259. Lim ST, Choa RG, Lam KH et al. Total parenteral nutrition versus gastrostomy in the preoperative preparation of patients with carcinoma of the oesophagus. Br J Surg 1981; 68: 69-72. doi:10.1002/bjs.1800680202
- 260. Magnusson J, Tranberg KG, Jeppsson B et al. Enteral versus parenteral glucose as the sole nutritional support after colorectal resection. A prospective, randomized comparison. Scand J Gastroenterol 1989; 24: 539-549. doi:10.3109/00365528909093086
- 261. McArdle AH, Reid EC, Laplante MP et al. Prophylaxis against radiation injury. The use of elemental diet prior to and during radiotherapy for invasive bladder cancer and in early postoperative feeding following radical cystectomy and ileal conduit. Arch Surg 1986; 121: 879-885. doi:10.1001/archsurg.1986.01400080021003
- 262. Nissilä MS, Perttilä JT, Salo MS et al. Natural killer cell activity after immediate postoperative enteral and parenteral nutrition. Acta Chir Scand 1989; 155: 229-232
- 263. Suchner U, Senftleben U, Eckart T et al. Enteral versus parenteral nutrition: effects on gastrointestinal function and metabolism. Nutrition 1996; 12: 13-22. doi:10.1016/0899-9007(95)00016-x
- 264. Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative

- complications. Cochrane Database Syst Rev 2006; 39: CD004080. doi:10.1002/14651858.CD004080.pub2
- 265. McClave SA, Taylor BE, Martindale RG et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40: 159-211. doi:10.1177/0148607115621863
- 266. Elia M, Normand C, Norman K et al. A systematic review of the cost and cost effectiveness of using standard oral nutritional supplements in the hospital setting. Clin Nutr 2016; 35: 370-380. doi:10.1016/j.clnu.2015.05.010
- 267. Gillis C, Buhler K, Bresee L et al. Effects of Nutritional Prehabilitation, With and Without Exercise, on Outcomes of Patients Who Undergo Colorectal Surgery: A Systematic Review and Meta-analysis. Gastroenterology 2018; 155: 391-410 e394. doi:10.1053/j.gastro.2018.05.012
- 268. [Anonym]. Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN J Parenter Enteral Nutr 2002; 26: 1sa-138sa
- 269. Bozzetti F, Gavazzi C, Miceli R et al. Perioperative total parenteral nutrition in malnourished, gastrointestinal cancer patients: a randomized, clinical trial. JPEN J Parenter Enteral Nutr 2000; 24: 7-14. doi:10.1177/014860710002400107
- 270. Brennan MF, Pisters PW, Posner M et al. A prospective randomized trial of total parenteral nutrition after major pancreatic resection for malignancy. Ann Surg 1994; 220: 436-441; discussion 441-434. doi:10.1097/00000658-199410000-00003
- 271. Fan ST, Lo CM, Lai EC et al. Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med 1994; 331: 1547-1552. doi:10.1056/NEJM199412083312303
- 272. Hu SS, Fontaine F, Kelly B et al. Nutritional depletion in staged spinal reconstructive surgery. The effect of total parenteral nutrition. Spine (Phila Pa 1976) 1998; 23: 1401-1405. doi:10.1097/00007632-199806150-00019
- 273. Jauch KW, Hartl WH, Georgieff M et al. Low-dose bradykinin infusion reduces endogenous glucose production in surgical patients. Metabolism 1988; 37: 185-190. doi:10.1016/s0026-0495(98)90016-6
- 274. Reilly J, Mehta R, Teperman L et al. Nutritional support after liver transplantation: a randomized prospective study. JPEN J Parenter Enteral Nutr 1990; 14: 386-391. doi:10.1177/0148607190014004386
- 275. Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. Perioperative total parenteral nutrition in surgical patients. N Engl J Med 1991; 325: 525-532
- 276. Wicks C, Somasundaram S, Bjarnason I et al. Comparison of enteral feeding and total parenteral nutrition after liver transplantation. Lancet 1994; 344: 837-840. doi:10.1016/s0140-6736(94)92824-x

- 277. Woodcock NP, Zeigler D, Palmer MD et al. Enteral versus parenteral nutrition: a pragmatic study. Nutrition 2001; 17: 1-12. doi:10.1016/s0899-9007(00)00576-1
- 278. Weimann A, Felbinger TW. Gastrointestinal dysmotility in the critically ill: a role for nutrition. Curr Opin Clin Nutr Metab Care 2016; 19: 353-359
- 279. Braunschweig CL, Levy P, Sheean PM et al. Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr 2001; 74: 534-542. doi:10.1093/ajcn/74.4.534
- 280. Heyland DK, Montalvo M, MacDonald S et al. Total parenteral nutrition in the surgical patient: a meta-analysis. Can J Surg 2001; 44: 102-111
- 281. Elke G, van Zanten ARH, Lemieux M et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Critical Care 2016; 20. doi:10.1186/s13054-016-1298-1
- 282. Lewis SR, Schofield-Robinson OJ, Alderson P et al. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst Rev 2018; 2019. doi:10.1002/14651858.cd012276.pub2
- 283. Tian F, Heighes PT, Allingstrup MJ et al. Early Enteral Nutrition Provided Within 24 Hours of ICU Admission. Crit Care Med 2018; 46: 1049-1056. doi:10.1097/ccm.0000000000003152
- 284. Zhang G, Zhang K, Cui W et al. The effect of enteral versus parenteral nutrition for critically ill patients: A systematic review and meta-analysis. J Clin Anesth 2018; 51: 62-92. doi:10.1016/j.jclinane.2018.08.008
- 285. Reignier J, Boisramé-Helms J, Brisard L et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet 2018; 391: 133-143. doi:10.1016/s0140-6736(17)32146-3
- 286. Lidder P, Flanagan D, Fleming S et al. Combining enteral with parenteral nutrition to improve postoperative glucose control. Br J Nutr 2010; 103: 1635-1641. doi:10.1017/s0007114509993631
- 287. Wu W, Zhong M, Zhu DM et al. Effect of Early Full-Calorie Nutrition Support Following Esophagectomy: A Randomized Controlled Trial. JPEN J Parenter Enteral Nutr 2017; 41: 1146-1154. doi:10.1177/0148607116651509
- 288. Dhaliwal R, Jurewitsch B, Harrietha D et al. Combination enteral and parenteral nutrition in critically ill patients: harmful or beneficial? A systematic review of the evidence. Intensive Care Med 2004; 30: 1666-1671. doi:10.1007/s00134-004-2345-y
- 289. Heyland DK, Dhaliwal R, Drover JW et al. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr 2003; 27: 355-373. doi:10.1177/0148607103027005355
- 290. Casaer MP, Mesotten D, Hermans G et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med 2011; 365: 506-517. doi:10.1056/NEJMoa1102662

- 291. Heidegger CP, Berger MM, Graf S et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet 2013; 381: 385-393. doi:10.1016/s0140-6736(12)61351-8
- 292. McCowen KC, Friel C, Sternberg J et al. Hypocaloric total parenteral nutrition: effectiveness in prevention of hyperglycemia and infectious complications--a randomized clinical trial. Crit Care Med 2000; 28: 3606-3611. doi:10.1097/00003246-200011000-00007
- 293. Gao X, Liu Y, Zhang L et al. Effect of Early vs Late Supplemental Parenteral Nutrition in Patients Undergoing Abdominal Surgery: A Randomized Clinical Trial. JAMA surgery 2022; 157: 384-393. doi:10.1001/jamasurg.2022.0269
- 294. Sánchez-Guillén L, Soriano-Irigaray L, López-Rodríguez-Arias F et al. Effect of Early Peripheral Parenteral Nutrition Support in an Enhanced Recovery Program for Colorectal Cancer Surgery: A Randomized Open Trial. J Clin Med 2021; 10. doi:10.3390/jcm10163647
- 295. López-Rodríguez-Arias F, Sánchez-Guillén L, Lillo-García C et al. Assessment of Body Composition as an Indicator of Early Peripheral Parenteral Nutrition Therapy in Patients Undergoing Colorectal Cancer Surgery in an Enhanced Recovery Program. Nutrients 2021; 13. doi:10.3390/nu13093245
- 296. Senkal M, Bonavina L, Reith B et al. Perioperative peripheral parenteral nutrition to support major gastrointestinal surgery: Expert opinion on treating the right patients at the right time. Clin Nutr ESPEN 2021; 43: 16-24. doi:10.1016/j.clnesp.2021.04.006
- 297. Durán-Poveda M, Bonavina L, Reith B et al. Nutrition practices with a focus on parenteral nutrition in the context of enhanced recovery programs: An exploratory survey of gastrointestinal surgeons. Clin Nutr ESPEN 2022; 50: 138-147. doi:10.1016/j.clnesp.2022.06.007
- 298. Hartl W, Parhofer K, Kuppinger D et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES und der AKE. Aktuelle Ernährungsmedizin 2013; 38: e90-e100
- 299. Menne R, Adolph M, Brock E et al. Cost analysis of parenteral nutrition regimens in the intensive care unit: three-compartment bag system vs multibottle system. JPEN J Parenter Enteral Nutr 2008; 32: 606-612. doi:10.1177/0148607108322404
- 300. Pichard C, Schwarz G, Frei A et al. Economic investigation of the use of three-compartment total parenteral nutrition bag: prospective randomized unblinded controlled study. Clin Nutr 2000; 19: 245-251. doi:10.1054/clnu.2000.0106
- 301. Turpin RS, Canada T, Rosenthal V et al. Bloodstream infections associated with parenteral nutrition preparation methods in the United States: a retrospective, large database analysis. JPEN J Parenter Enteral Nutr 2012; 36: 169-176. doi:10.1177/0148607111414714
- 302. Barr J, Hecht M, Flavin KE et al. Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest 2004; 125: 1446-1457. doi:10.1378/chest.125.4.1446

- 303. Doig GS, Simpson F, Finfer S et al. Effect of evidence-based feeding guidelines on mortality of critically ill adults: a cluster randomized controlled trial. JAMA 2008; 300: 2731-2741. doi:10.1001/jama.2008.826
- 304. Bhattacharyya A, Ramamoorthy L, Pottakkat B. Effect of Pre-operative Nutritional Protocol Implementation on Postoperative Outcomes Following Gastrointestinal Surgeries: A Randomized Clinical Trial. Journal of caring sciences 2021; 10: 177-183. doi:10.34172/jcs.2021.030
- 305. Heyland D, Muscedere J, Wischmeyer PE et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 2013; 368: 1489-1497. doi:10.1056/NEJMoa1212722
- 306. Wernerman J. What Is Actually Attributable to Glutamine? JPEN J Parenter Enteral Nutr 2017; 41: 9. doi:10.1177/0148607116637938
- 307. Wernerman J. How to understand the results of studies of glutamine supplementation. Crit Care 2015; 19: 385. doi:10.1186/s13054-015-1090-7
- 308. van Zanten AR, Hofman Z. Standard vs enriched high protein enteral nutrition in the ICU--reply. JAMA 2014; 312: 2288-2289. doi:10.1001/jama.2014.14499
- 309. van Zanten AR, Hofman Z, Heyland DK. Consequences of the REDOXS and METAPLUS Trials: The End of an Era of Glutamine and Antioxidant Supplementation for Critically III Patients? JPEN J Parenter Enteral Nutr 2015; 39: 890-892. doi:10.1177/0148607114567201
- van Zanten AR, Hofman Z, Heyland DK. Authors' Response to Vermeulen et al. JPEN J Parenter Enteral Nutr 2016; 40: 12-13. doi:10.1177/0148607115589371
- 311. Conejero R, Bonet A, Grau T et al. Effect of a glutamine-enriched enteral diet on intestinal permeability and infectious morbidity at 28 days in critically ill patients with Systemic Inflammatory Response Syndrome. Nutrition 2002; 18: 716-721. doi:10.1016/s0899-9007(02)00847-x
- 312. García-de-Lorenzo A, Zarazaga A, García-Luna PP et al. Clinical evidence for enteral nutritional support with glutamine. Nutrition 2003; 19: 805-811. doi:10.1016/s0899-9007(03)00103-5
- 313. Houdijk AP, Rijnsburger ER, Jansen J et al. Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 1998; 352: 772-776. doi:10.1016/S0140-6736(98)02007-8
- 314. Zhou YP, Jiang ZM, Sun YH et al. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. JPEN J Parenter Enteral Nutr 2003; 27: 241-245. doi:10.1177/0148607103027004241
- 315. Heyland DK, Wischmeyer P, Jeschke MG et al. A RandomizEd trial of ENtERal Glutamine to minimIZE thermal injury (The RE-ENERGIZE Trial): a clinical trial protocol. Scars Burn Heal 2017; 3: 2059513117745241. doi:10.1177/2059513117745241
- 316. Jian ZM, Cao JD, Zhu XG et al. The impact of alanyl-glutamine on clinical safety, nitrogen balance, intestinal permeability, and clinical outcome in postoperative patients: a randomized, double-blind, controlled study of 120 patients. JPEN J Parenter Enteral Nutr 1999; 23: S62-66. doi:10.1177/014860719902300516

- 317. Bollhalder L, Pfeil AM, Tomonaga Y et al. A systematic literature review and meta-analysis of randomized clinical trials of parenteral glutamine supplementation. Clin Nutr 2013; 32: 213-223. doi:10.1016/j.clnu.2012.11.003
- 318. Wang Y, Jiang ZM, Nolan MT et al. The Impact of Glutamine Dipeptide Supplemented Parenteral Nutrition on Outcomes of Surgical Patients: A Meta Analysis of Randomized Clinical Trials. JPEN J Parenter Enteral Nutr 2010; 34: 521-529
- 319. Kang K, Shu XL, Zhang YS et al. Effect of glutamine enriched nutrition support on surgical patients with gastrointestinal tumor: a meta-analysis of randomized controlled trials. Chin Med J (Engl) 2015; 128: 245-251. doi:10.4103/0366-6999.149219
- 320. Sandini M, Nespoli L, Oldani M et al. Effect of glutamine dipeptide supplementation on primary outcomes for elective major surgery: systematic review and meta-analysis. Nutrients 2015; 7: 481-499. doi:10.3390/nu7010481
- 321. Nothacker M, Rütters D. Evidenzbericht 2012: Analyse von Metaanalysen zur perioperativen klinischen Ernährung. Ärztliches Zentrum für Qualität in der Medizin (ÄZQ) Berlin 2012.
- 322. Cui Y, Hu L, Liu Y-j et al. Intravenous alanyl-L-glutamine balances glucose—insulin homeostasis and facilitates recovery in patients undergoing colonic resection: A randomised controlled trial. Eur J Anaesthesiol 2014; 31: 212-218
- 323. Gianotti L, Braga M, Biffi R et al. Perioperative intravenous glutamine supplementation in major abdominal surgery for cancer: a randomized multicenter trial. Ann Surg 2009; 250: 684-690. doi:10.1097/SLA.0b013e3181bcb28d
- 324. Ziegler TR, May AK, Hebbar G et al. Efficacy and Safety of Glutamine-supplemented Parenteral Nutrition in Surgical ICU Patients: An American Multicenter Randomized Controlled Trial. Ann Surg 2016; 263: 646-655. doi:10.1097/sla.000000000001487
- 325. Yang T, Yan X, Cao Y et al. Meta-analysis of Glutamine on Immune Function and Post-Operative Complications of Patients With Colorectal Cancer. Frontiers in nutrition 2021; 8: 765809. doi:10.3389/fnut.2021.765809
- 326. Tan HB, Danilla S, Murray A et al. Immunonutrition as an adjuvant therapy for burns. Cochrane Database Syst Rev 2014. doi:10.1002/14651858.CD007174.pub2: CD007174. doi:10.1002/14651858.CD007174.pub2
- 327. Vidal-Casariego A, Calleja-Fernandez A, Villar-Taibo R et al. Efficacy of arginine-enriched enteral formulas in the reduction of surgical complications in head and neck cancer: a systematic review and meta-analysis. Clin Nutr 2014; 33: 951-957. doi:10.1016/j.clnu.2014.04.020
- 328. Buijs N, van Bokhorst-de van der Schueren MA, Langius JA et al. Perioperative arginine-supplemented nutrition in malnourished patients with head and neck cancer improves long-term survival. Am J Clin Nutr 2010; 92: 1151-1156. doi:10.3945/ajcn.2010.29532

- 329. Adiamah A, Rollins KE, Kapeleris A et al. Postoperative arginine-enriched immune modulating nutrition: Long-term survival results from a randomised clinical trial in patients with oesophagogastric and pancreaticobiliary cancer. Clin Nutr 2021; 40: 5482-5485. doi:10.1016/j.clnu.2021.09.040
- 330. Bae HJ, Lee GY, Seong JM et al. Outcomes with perioperative fat emulsions containing omega-3 fatty acid: A meta-analysis of randomized controlled trials. Am J Health Syst Pharm 2017; 74: 904-918. doi:10.2146/ajhp151015
- 331. Chen B, Zhou Y, Yang P et al. Safety and efficacy of fish oil-enriched parenteral nutrition regimen on postoperative patients undergoing major abdominal surgery: a meta-analysis of randomized controlled trials. JPEN J Parenter Enteral Nutr 2010; 34: 387-394. doi:10.1177/0148607110362532
- 332. Li N-N, Zhou Y, Qin X-P et al. Does intravenous fish oil benefit patients postsurgery? A meta-analysis of randomised controlled trials. Clin Nutr 2014; 33: 226-239
- 333. Tian H, Yao X, Zeng R et al. Safety and efficacy of a new parenteral lipid emulsion (SMOF) for surgical patients: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2013; 71: 815-821. doi:10.1111/nure.12053
- 334. Wei C, Hua J, Bin C et al. Impact of lipid emulsion containing fish oil on outcomes of surgical patients: systematic review of randomized controlled trials from Europe and Asia. Nutrition 2010; 26: 474-481. doi:10.1016/j.nut.2009.09.011
- 335. Mocellin MC, Fernandes R, Chagas TR et al. A meta-analysis of n-3 polyunsaturated fatty acids effects on circulating acute-phase protein and cytokines in gastric cancer. Clin Nutr 2018; 37: 840-850. doi:10.1016/j.clnu.2017.05.008
- 336. Pradelli L, Mayer K, Muscaritoli M et al. n-3 fatty acid-enriched parenteral nutrition regimens in elective surgical and ICU patients: a meta-analysis. Crit Care 2012; 16: R184. doi:10.1186/cc11668
- 337. Pradelli L, Mayer K, Klek S et al. omega-3 Fatty-Acid Enriched Parenteral Nutrition in Hospitalized Patients: Systematic Review With Meta-Analysis and Trial Sequential Analysis. JPEN J Parenter Enteral Nutr 2020; 44: 44-57. doi:10.1002/jpen.1672
- 338. Lu S, Yang Z, Tang H et al. Associations between omega-3 polyunsaturated fatty acids supplementation and surgical prognosis in patients with gastrointestinal cancer: A systematic review and meta-analysis. Food chemistry Molecular sciences 2022; 4: 100099. doi:10.1016/j.fochms.2022.100099
- 339. Linecker M, Botea F, Aristotele Raptis D et al. Perioperative omega-3 fatty acids fail to confer protection in liver surgery: Results of a multicentric, double-blind, randomized controlled trial. J Hepatol 2020; 72: 498-505. doi:10.1016/j.jhep.2019.10.004
- 340. Klek S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. J Clin Med 2016; 5: 34. doi:10.3390/jcm5030034
- 341. Bower RH, Cerra FB, Bershadsky B et al. Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in

- intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med 1995; 23: 436-449. doi:10.1097/00003246-199503000-00006
- 342. Brown RO, Hunt H, Mowatt-Larssen CA et al. Comparison of specialized and standard enteral formulas in trauma patients. Pharmacotherapy 1994; 14: 314-320
- 343. Daly JM, Lieberman MD, Goldfine J et al. Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: immunologic, metabolic, and clinical outcome. Surgery 1992; 112: 56-67
- 344. Gianotti L, Braga M, Vignali A et al. Effect of route of delivery and formulation of postoperative nutritional support in patients undergoing major operations for malignant neoplasms. Arch Surg 1997; 132: 1222-1229; discussion 1229-1230. doi:10.1001/archsurg.1997.01430350072012
- 345. Heslin MJ, Latkany L, Leung D et al. A prospective, randomized trial of early enteral feeding after resection of upper gastrointestinal malignancy. Ann Surg 1997; 226: 567-577; discussion 577-580. doi:10.1097/00000658-199710000-00016
- 346. Klek S, Kulig J, Sierzega M et al. Standard and immunomodulating enteral nutrition in patients after extended gastrointestinal surgery--a prospective, randomized, controlled clinical trial. Clin Nutr 2008; 27: 504-512. doi:10.1016/j.clnu.2008.04.010
- 347. Kudsk KA, Minard G, Croce MA et al. A randomized trial of isonitrogenous enteral diets after severe trauma. An immune-enhancing diet reduces septic complications. Ann Surg 1996; 224: 531-540; discussion 540-533. doi:10.1097/00000658-199610000-00011
- 348. Mendez C, Jurkovich GJ, Garcia I et al. Effects of an immune-enhancing diet in critically injured patients. J Trauma 1997; 42: 933-940; discussion 940-931. doi:10.1097/00005373-199705000-00026
- 349. Moore FA, Moore EE, Kudsk KA et al. Clinical benefits of an immune-enhancing diet for early postinjury enteral feeding. J Trauma 1994; 37: 607-615. doi:10.1097/00005373-199410000-00014
- 350. Senkal M, Mumme A, Eickhoff U et al. Early postoperative enteral immunonutrition: clinical outcome and cost-comparison analysis in surgical patients. Crit Care Med 1997; 25: 1489-1496. doi:10.1097/00003246-199709000-00015
- 351. Snyderman CH, Kachman K, Molseed L et al. Reduced postoperative infections with an immune-enhancing nutritional supplement. Laryngoscope 1999; 109: 915-921. doi:10.1097/00005537-199906000-00014
- 352. Weimann A, Bastian L, Bischoff WE et al. Influence of arginine, omega-3 fatty acids and nucleotide-supplemented enteral support on systemic inflammatory response syndrome and multiple organ failure in patients after severe trauma. Nutrition 1998; 14: 165-172. doi:10.1016/s0899-9007(97)00429-2
- 353. Beale RJ, Bryg DJ, Bihari DJ. Immunonutrition in the critically ill: a systematic review of clinical outcome. Crit Care Med 1999; 27: 2799-2805. doi:10.1097/00003246-199912000-00032

- 354. Cerantola Y, Hubner M, Grass F et al. Immunonutrition in gastrointestinal surgery. Br J Surg 2011; 98: 37-48. doi:10.1002/bjs.7273
- 355. Drover JW, Dhaliwal R, Weitzel L et al. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg 2011; 212: 385-399, 399 e381. doi:10.1016/j.jamcollsurg.2010.10.016
- 356. Heyland DK, Novak F, Drover JW et al. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 2001; 286: 944-953. doi:10.1001/jama.286.8.944
- 357. Heys SD, Walker LG, Smith I et al. Enteral nutritional supplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials. Ann Surg 1999; 229: 467-477. doi:10.1097/00000658-199904000-00004
- 358. Waitzberg DL, Saito H, Plank LD et al. Postsurgical infections are reduced with specialized nutrition support. World J Surg 2006; 30: 1592-1604. doi:10.1007/s00268-005-0657-x
- 359. Marik PE, Zaloga GP. Immunonutrition in high-risk surgical patients: a systematic review and analysis of the literature. JPEN J Parenter Enteral Nutr 2010; 34: 378-386. doi:10.1177/0148607110362692
- 360. Marimuthu K, Varadhan KK, Ljungqvist O et al. A meta-analysis of the effect of combinations of immune modulating nutrients on outcome in patients undergoing major open gastrointestinal surgery. Ann Surg 2012; 255: 1060-1068. doi:10.1097/SLA.0b013e318252edf8
- Montejo JC, Zarazaga A, Lopez-Martinez J et al. Immunonutrition in the intensive care unit. A systematic review and consensus statement. Clin Nutr 2003; 22: 221-233. doi:10.1016/s0261-5614(03)00007-4
- 362. Stableforth WD, Thomas S, Lewis SJ. A systematic review of the role of immunonutrition in patients undergoing surgery for head and neck cancer. Int J Oral Maxillofac Surg 2009; 38: 103-110. doi:10.1016/j.ijom.2008.12.008
- 363. Wilhelm SM, Kale-Pradhan PB. Combination of arginine and omega-3 fatty acids enteral nutrition in critically ill and surgical patients: a meta-analysis. Expert Rev Clin Pharmacol 2010; 3: 459-469. doi:10.1586/ecp.10.29
- 364. Zhang Y, Gu Y, Guo T et al. Perioperative immunonutrition for gastrointestinal cancer: a systematic review of randomized controlled trials. Surg Oncol 2012; 21: e87-95. doi:10.1016/j.suronc.2012.01.002
- 365. Osland E, Hossain MB, Khan S et al. Effect of timing of pharmaconutrition (immunonutrition) administration on outcomes of elective surgery for gastrointestinal malignancies: a systematic review and meta-analysis. JPEN J Parenter Enteral Nutr 2014; 38: 53-69. doi:10.1177/0148607112474825
- 366. Song GM, Tian X, Liang H et al. Role of Enteral Immunonutrition in Patients Undergoing Surgery for Gastric Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore) 2015; 94: e1311. doi:10.1097/MD.000000000001311

- 367. Wong CS, Aly EH. The effects of enteral immunonutrition in upper gastrointestinal surgery: A systematic review and meta-analysis. Int J Surg 2016; 29: 137-150. doi:10.1016/j.ijsu.2016.03.043
- 368. Arends J, Bachmann P, Baracos V et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr 2017; 36: 11-48. doi:10.1016/j.clnu.2016.07.015
- 369. Braga M, Gianotti L, Radaelli G et al. Perioperative immunonutrition in patients undergoing cancer surgery: results of a randomized double-blind phase 3 trial. Arch Surg 1999; 134: 428-433. doi:10.1001/archsurg.134.4.428
- 370. Braga M, Gianotti L, Vignali A et al. Preoperative oral arginine and n-3 fatty acid supplementation improves the immunometabolic host response and outcome after colorectal resection for cancer. Surgery 2002; 132: 805-814. doi:10.1067/msy.2002.128350
- 371. Senkal M, Zumtobel V, Bauer KH et al. Outcome and cost-effectiveness of perioperative enteral immunonutrition in patients undergoing elective upper gastrointestinal tract surgery: a prospective randomized study. Arch Surg 1999; 134: 1309-1316. doi:10.1001/archsurg.134.12.1309
- 372. Tepaske R, Te Velthuis H, Oudemans-van Straaten HM et al. Effect of preoperative oral immune-enhancing nutritional supplement on patients at high risk of infection after cardiac surgery: a randomised placebo-controlled trial. Lancet 2001; 358: 696-701
- 373. Braga M, Gianotti L, Nespoli L et al. Nutritional approach in malnourished surgical patients: a prospective randomized study. Arch Surg 2002; 137: 174-180. doi:10.1001/archsurg.137.2.174
- 374. Klek S, Szybinski P, Szczepanek K. Perioperative immunonutrition in surgical cancer patients: a summary of a decade of research. World J Surg 2014; 38: 803-812. doi:10.1007/s00268-013-2323-z
- 375. Achilli P, Mazzola M, Bertoglio CL et al. Preoperative immunonutrition in frail patients with colorectal cancer: an intervention to improve postoperative outcomes. Int J Colorectal Dis 2020; 35: 19-27. doi:10.1007/s00384-019-03438-4
- 376. Thornblade LW, Varghese TK, Jr., Shi X et al. Preoperative Immunonutrition and Elective Colorectal Resection Outcomes. Dis Colon Rectum 2017; 60: 68-75. doi:10.1097/DCR.0000000000000000740
- 377. Nakajima H, Yokoyama Y, Inoue T et al. Clinical Benefit of Preoperative Exercise and Nutritional Therapy for Patients Undergoing Hepato-Pancreato-Biliary Surgeries for Malignancy. Ann Surg Oncol 2019; 26: 264-272. doi:10.1245/s10434-018-6943-2
- 378. Challine A, Rives-Lange C, Danoussou D et al. Impact of Oral Immunonutrition on Postoperative Morbidity in Digestive Oncologic Surgery: A Nation-wide Cohort Study. Ann Surg 2021; 273: 725-731. doi:10.1097/SLA.0000000000003282
- 379. Kelley KE, Fajardo AD, Strange NM et al. Impact of a Novel Preoperative Patient-centered Surgical Wellness Program. Ann Surg 2018; 268: 650-656. doi:10.1097/SLA.000000000002932

- 380. Hubner M, Cerantola Y, Grass F et al. Preoperative immunonutrition in patients at nutritional risk: results of a double-blinded randomized clinical trial. Eur J Clin Nutr 2012; 66: 850-855. doi:10.1038/ejcn.2012.53
- 381. Giger-Pabst U, Lange J, Maurer C et al. Short-term preoperative supplementation of an immunoenriched diet does not improve clinical outcome in well-nourished patients undergoing abdominal cancer surgery. Nutrition 2013; 29: 724-729. doi:10.1016/j.nut.2012.10.007
- 382. Hegazi RA, Hustead DS, Evans DC. Preoperative standard oral nutrition supplements vs immunonutrition: results of a systematic review and meta-analysis. J Am Coll Surg 2014; 219: 1078-1087. doi:10.1016/j.jamcollsurg.2014.06.016
- 383. Burden S, Todd C, Hill J et al. Pre-operative nutrition support in patients undergoing gastrointestinal surgery. Cochrane Database Syst Rev 2012; 11: CD008879. doi:10.1002/14651858.CD008879.pub2
- 384. Yu K, Zheng X, Wang G et al. Immunonutrition vs Standard Nutrition for Cancer Patients: A Systematic Review and Meta-Analysis (Part 1). JPEN J Parenter Enteral Nutr 2020; 44: 742-767. doi:10.1002/jpen.1736
- 385. Adiamah A, Skorepa P, Weimann A et al. The Impact of Preoperative Immune Modulating Nutrition on Outcomes in Patients Undergoing Surgery for Gastrointestinal Cancer: A Systematic Review and Meta-analysis. Ann Surg 2019; 270: 247-256. doi:10.1097/SLA.000000000003256
- 386. Buzquurz F, Bojesen RD, Grube C et al. Impact of oral preoperative and perioperative immunonutrition on postoperative infection and mortality in patients undergoing cancer surgery: systematic review and meta-analysis with trial sequential analysis. BJS Open 2020; 4: 764-775. doi:10.1002/bjs5.50314
- 387. Shen J, Dai S, Li Z et al. Effect of Enteral Immunonutrition in Patients Undergoing Surgery for Gastrointestinal Cancer: An Updated Systematic Review and Meta-Analysis. Frontiers in nutrition 2022; 9: 941975. doi:10.3389/fnut.2022.941975
- 388. Lee SY, Lee J, Park HM et al. Impact of Preoperative Immunonutrition on the Outcomes of Colon Cancer Surgery: Results from a Randomized Controlled Trial. Ann Surg 2021. doi:10.1097/sla.000000000005140. doi:10.1097/sla.00000000000005140
- 389. Zhang X, Chen X, Yang J et al. Effects of nutritional support on the clinical outcomes of well-nourished patients with cancer: a meta-analysis. Eur J Clin Nutr 2020; 74: 1389-1400. doi:10.1038/s41430-020-0595-6
- 390. Howes N, Lewis SJ, Thomas S. Immunonutrition for patients undergoing surgery for head and neck cancer. Cochrane Database Syst Rev 2014. doi:10.1002/14651858.Cd010954. doi:10.1002/14651858.Cd010954
- 391. Deftereos I, Kiss N, Isenring E et al. A systematic review of the effect of preoperative nutrition support on nutritional status and treatment outcomes in upper gastrointestinal cancer resection. Eur J Surg Oncol 2020; 46: 1423-1434. doi:10.1016/j.ejso.2020.04.008
- 392. Song GM, Liu XL, Bian W et al. Systematic review with network meta-analysis: comparative efficacy of different enteral immunonutrition formulas in patients

- underwent gastrectomy. Oncotarget 2017; 8: 23376-23388. doi:10.18632/oncotarget.15580
- 393. Qiang H, Hang L, Shui SY. The curative effect of early use of enteral immunonutrition in postoperative gastric cancer: a meta-analysis. Minerva Gastroenterol Dietol 2017; 63: 285-292. doi:10.23736/s1121-421x.16.02322-9
- 394. Cheng Y, Zhang J, Zhang L et al. Enteral immunonutrition versus enteral nutrition for gastric cancer patients undergoing a total gastrectomy: a systematic review and meta-analysis. BMC Gastroenterol 2018; 18: 11. doi:10.1186/s12876-018-0741-y
- 395. Li XK, Zhou H, Xu Y et al. Enteral immunonutrition versus enteral nutrition for patients undergoing oesophagectomy: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg 2020; 30: 854-862. doi:10.1093/icvts/ivaa022
- 396. Mingliang W, Zhangyan K, Fangfang F et al. Perioperative immunonutrition in esophageal cancer patients undergoing esophagectomy: the first meta-analysis of randomized clinical trials. Dis Esophagus 2020; 33. doi:10.1093/dote/doz111
- 397. Zhang C, Chen B, Jiao A et al. The benefit of immunonutrition in patients undergoing hepatectomy: a systematic review and meta-analysis. Oncotarget 2017; 8: 86843-86852. doi:10.18632/oncotarget.20045
- 398. Gao B, Luo J, Liu Y et al. Clinical Efficacy of Perioperative Immunonutrition Containing Omega-3-Fatty Acids in Patients Undergoing Hepatectomy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann Nutr Metab 2020; 76: 375-386. doi:10.1159/000509979
- 399. Wong CS, Praseedom R, Liau SS. Perioperative immunonutrition in hepatectomy: A systematic review and meta-analysis. Ann Hepatobiliary Pancreat Surg 2020; 24: 396-414. doi:10.14701/ahbps.2020.24.4.396
- 400. Guan H, Chen S, Huang Q. Effects of Enteral Immunonutrition in Patients Undergoing Pancreaticoduodenectomy: A Meta-Analysis of Randomized Controlled Trials. Ann Nutr Metab 2019; 74: 53-61. doi:10.1159/000495468
- 401. Yang FA, Chen YC, Tiong C. Immunonutrition in Patients with Pancreatic Cancer Undergoing Surgical Intervention: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020; 12: 2798. doi:10.3390/nu12092798
- 402. Moya P, Soriano-Irigaray L, Ramirez JM et al. Perioperative Standard Oral Nutrition Supplements Versus Immunonutrition in Patients Undergoing Colorectal Resection in an Enhanced Recovery (ERAS) Protocol: A Multicenter Randomized Clinical Trial (SONVI Study). Medicine (Baltimore) 2016; 95: e3704. doi:10.1097/md.00000000000003704
- 403. Slim K, Badon F, Vacheron CH et al. Umbrella review of the efficacy of perioperative immunonutrition in visceral surgery. Clin Nutr ESPEN 2022; 48: 99-108. doi:10.1016/j.clnesp.2022.02.015
- 404. Kinross JM, Markar S, Karthikesalingam A et al. A meta-analysis of probiotic and synbiotic use in elective surgery: does nutrition modulation of the gut microbiome improve clinical outcome? JPEN J Parenter Enteral Nutr 2013; 37: 243-253. doi:10.1177/0148607112452306

- 405. Chowdhury AH, Adiamah A, Kushairi A et al. Perioperative Probiotics or Synbiotics in Adults Undergoing Elective Abdominal Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann Surg 2020; 271: 1036-1047. doi:10.1097/SLA.000000000003581
- 406. Gu WJ, Deng T, Gong YZ et al. The effects of probiotics in early enteral nutrition on the outcomes of trauma: a meta-analysis of randomized controlled trials. JPEN J Parenter Enteral Nutr 2013; 37: 310-317. doi:10.1177/0148607112463245
- 407. Falcao de Arruda IS, de Aguilar-Nascimento JE. Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci (Lond) 2004; 106: 287-292. doi:10.1042/CS20030251
- 408. Kahn J, Pregartner G, Schemmer P. Effects of both Pro- and Synbiotics in Liver Surgery and Transplantation with Special Focus on the Gut-Liver Axis-A Systematic Review and Meta-Analysis. Nutrients 2020; 12: 2461. doi:10.3390/nu12082461
- 409. Grat M, Wronka KM, Lewandowski Z et al. Effects of continuous use of probiotics before liver transplantation: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2017; 36: 1530-1539. doi:10.1016/j.clnu.2017.04.021
- 410. Liu Z, Li C, Huang M et al. Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterol 2015; 15: 34. doi:10.1186/s12876-015-0260-z
- 411. Iida H, Sasaki M, Maehira H et al. The effect of preoperative synbiotic treatment to prevent surgical-site infection in hepatic resection. J Clin Biochem Nutr 2020; 66: 67-73. doi:10.3164/icbn.19-46
- 412. Zaharuddin L, Mokhtar NM, Muhammad Nawawi KN et al. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol 2019; 19: 131. doi:10.1186/s12876-019-1047-4
- 413. Mokhtari Z, Karbaschian Z, Pazouki A et al. The Effects of Probiotic Supplements on Blood Markers of Endotoxin and Lipid Peroxidation in Patients Undergoing Gastric Bypass Surgery; a Randomized, Double-Blind, Placebo-Controlled, Clinical Trial with 13 Months Follow-Up. Obes Surg 2019; 29: 1248-1258. doi:10.1007/s11695-018-03667-6
- 414. Besselink MGH, van Santvoort HC, Buskens E et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. The Lancet 2008; 371: 651-659. doi:10.1016/s0140-6736(08)60207-x
- 415. Kotzampassi K, Giamarellos-Bourboulis EJ, Voudouris A et al. Benefits of a synbiotic formula (Synbiotic 2000Forte) in critically III trauma patients: early results of a randomized controlled trial. World J Surg 2006; 30: 1848-1855. doi:10.1007/s00268-005-0653-1
- 416. Kanazawa H, Nagino M, Kamiya S et al. Synbiotics reduce postoperative infectious complications: a randomized controlled trial in biliary cancer patients undergoing hepatectomy. Langenbecks Arch Surg 2005; 390: 104-113. doi:10.1007/s00423-004-0536-1

- 417. Rayes N, Seehofer D, Theruvath T et al. Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation--a randomized, double-blind trial. Am J Transplant 2005; 5: 125-130. doi:10.1111/j.1600-6143.2004.00649.x
- 418. Rayes N, Seehofer D, Theruvath T et al. Effect of enteral nutrition and synbiotics on bacterial infection rates after pylorus-preserving pancreatoduodenectomy: a randomized, double-blind trial. Ann Surg 2007; 246: 36-41. doi:10.1097/01.sla.0000259442.78947.19
- 419. Rayes N, Pilarski T, Stockmann M et al. Effect of pre- and probiotics on liver regeneration after resection: a randomised, double-blind pilot study. Benef Microbes 2012; 3: 237-244. doi:10.3920/BM2012.0006
- 420. Sugawara G, Nagino M, Nishio H et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Ann Surg 2006; 244: 706-714. doi:10.1097/01.sla.0000219039.20924.88
- 421. Usami M, Miyoshi M, Kanbara Y et al. Effects of perioperative synbiotic treatment on infectious complications, intestinal integrity, and fecal flora and organic acids in hepatic surgery with or without cirrhosis. JPEN J Parenter Enteral Nutr 2011; 35: 317-328. doi:10.1177/0148607110379813
- 422. Rayes N, Seehofer D, Hansen S et al. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation 2002; 74: 123-127. doi:10.1097/00007890-200207150-00021
- 423. McNaught CE, Woodcock NP, MacFie J et al. A prospective randomised study of the probiotic Lactobacillus plantarum 299V on indices of gut barrier function in elective surgical patients. Gut 2002; 51: 827-831. doi:10.1136/gut.51.6.827
- 424. Anderson AD, McNaught CE, Jain PK et al. Randomised clinical trial of synbiotic therapy in elective surgical patients. Gut 2004; 53: 241-245. doi:10.1136/gut.2003.024620
- 425. Reddy BS, Macfie J, Gatt M et al. Randomized clinical trial of effect of synbiotics, neomycin and mechanical bowel preparation on intestinal barrier function in patients undergoing colectomy. Br J Surg 2007; 94: 546-554. doi:10.1002/bjs.5705
- 426. Theodoropoulos GE, Memos NA, Peitsidou K et al. Synbiotics and gastrointestinal function-related quality of life after elective colorectal cancer resection. Annals of gastroenterology 2016; 29: 56-62
- 427. Flesch AT, Tonial ST, Contu PC et al. Perioperative synbiotics administration decreases postoperative infections in patients with colorectal cancer: a randomized, double-blind clinical trial. Revista do Colegio Brasileiro de Cirurgioes 2017; 44: 567-573. doi:10.1590/0100-69912017006004
- 428. Komatsu S, Sakamoto E, Norimizu S et al. Efficacy of perioperative synbiotics treatment for the prevention of surgical site infection after laparoscopic colorectal surgery: a randomized controlled trial. Surg Today 2016; 46: 479-490. doi:10.1007/s00595-015-1178-3
- 429. Okazaki M, Matsukuma S, Suto R et al. Perioperative synbiotic therapy in elderly patients undergoing gastroenterological surgery: A prospective,

- randomized control trial. Nutrition 2013; 29: 1224-1230. doi:10.1016/j.nut.2013.03.015
- 430. Rayes N, Hansen S, Seehofer D et al. Early enteral supply of fiber and Lactobacilli versus conventional nutrition: a controlled trial in patients with major abdominal surgery. Nutrition 2002; 18: 609-615. doi:10.1016/s0899-9007(02)00811-0
- 431. Nomura T, Tsuchiya Y, Nashimoto A et al. Probiotics reduce infectious complications after pancreaticoduodenectomy. Hepatogastroenterology 2007; 54: 661-663
- 432. Oláh A, Belágyi T, Issekutz Á et al. Randomized clinical trial of specific lactobacillus and fibre supplement to early enteral nutrition in patients with acute pancreatitis. Br J Surg 2002; 89: 1103-1107. doi:10.1046/j.1365-2168.2002.02189.x
- 433. Oláh A, Belágyi T, Pótó L et al. Synbiotic control of inflammation and infection in severe acute pancreatitis: a prospective, randomized, double blind study. Hepatogastroenterology 2007; 54: 590-594
- 434. Rammohan A, Sathyanesan J, Rajendran K et al. Synbiotics in Surgery for Chronic Pancreatitis. Ann Surg 2015; 262: 31-37. doi:10.1097/sla.0000000000001077
- 435. Sommacal HM, Bersch VP, Vitola SP et al. Perioperative Synbiotics Decrease Postoperative Complications in Periampullary Neoplasms: A Randomized, Double-Blind Clinical Trial. Nutr Cancer 2015; 67: 457-462. doi:10.1080/01635581.2015.1004734
- 436. Yokoyama Y, Miyake T, Kokuryo T et al. Effect of Perioperative Synbiotic Treatment on Bacterial Translocation and Postoperative Infectious Complications after Pancreatoduodenectomy. Dig Surg 2016; 33: 220-229. doi:10.1159/000444459
- 437. Eguchi S, Takatsuki M, Hidaka M et al. Perioperative synbiotic treatment to prevent infectious complications in patients after elective living donor liver transplantation: a prospective randomized study. The American Journal of Surgery 2011; 201: 498-502. doi:10.1016/j.amjsurg.2010.02.013
- 438. Yokoyama Y, Nishigaki E, Abe T et al. Randomized clinical trial of the effect of perioperative synbiotics versus no synbiotics on bacterial translocation after oesophagectomy. Br J Surg 2014; 101: 189-199. doi:10.1002/bjs.9385
- 439. Tanaka K, Yano M, Motoori M et al. Impact of perioperative administration of synbiotics in patients with esophageal cancer undergoing esophagectomy: A prospective randomized controlled trial. Surgery 2012; 152: 832-842. doi:10.1016/j.surg.2012.02.021
- 440. Spindler-Vesel A, Bengmark S, Vovk I et al. Synbiotics, Prebiotics, Glutamine, or Peptide in Early Enteral Nutrition: A Randomized Study in Trauma Patients. Journal of Parenteral and Enteral Nutrition 2007; 31: 119-126. doi:10.1177/0148607107031002119
- 441. Stoppe C, McDonald B, Rex S et al. SodiUm SeleniTe Adminstration IN Cardiac Surgery (SUSTAIN CSX-trial): study design of an international multicenter randomized double-blinded controlled trial of high dose sodium-selenite

- administration in high-risk cardiac surgical patients. Trials 2014; 15: 339. doi:10.1186/1745-6215-15-339
- 442. Klein S, Kinney J, Jeejeebhoy K et al. Nutrition support in clinical practice: review of published data and recommendations for future research directions. Summary of a conference sponsored by the National Institutes of Health, American Society for Parenteral and Enteral Nutrition, and American Society for Clinical Nutrition. Am J Clin Nutr 1997; 66: 683-706. doi:10.1093/ajcn/66.3.683
- 443. Khuri SF, Daley J, Henderson W et al. Risk adjustment of the postoperative mortality rate for the comparative assessment of the quality of surgical care: results of the National Veterans Affairs Surgical Risk Study. J Am Coll Surg 1997; 185: 315-327
- 444. Hennessey DB, Burke JP, Ni-Dhonochu T et al. Preoperative hypoalbuminemia is an independent risk factor for the development of surgical site infection following gastrointestinal surgery: a multi-institutional study. Ann Surg 2010; 252: 325-329
- 445. Suding P, Jensen E, Abramson MA et al. Definitive risk factors for anastomotic leaks in elective open colorectal resection. Arch Surg 2008; 143: 907-911; discussion 911-902. doi:10.1001/archsurg.143.9.907
- 446. Hübner M, Mantziari S, Demartines N et al. Postoperative Albumin Drop Is a Marker for Surgical Stress and a Predictor for Clinical Outcome: A Pilot Study. Gastroenterol Res Pract 2016; 2016: 8743187. doi:10.1155/2016/8743187
- 447. Fukuda Y, Yamamoto K, Hirao M et al. Prevalence of Malnutrition Among Gastric Cancer Patients Undergoing Gastrectomy and Optimal Preoperative Nutritional Support for Preventing Surgical Site Infections. Ann Surg Oncol 2015; 22 Suppl 3: S778-785. doi:10.1245/s10434-015-4820-9
- 448. Wada N, Kurokawa Y, Tanaka K et al. Perioperative Nutritional Support With Beta-hydroxy-beta-methylbutyrate, Arginine, and Glutamine in Surgery for Abdominal Malignancies. Wounds: a compendium of clinical research and practice 2018; 30: 251-256
- 449. Jie B, Jiang ZM, Nolan MT et al. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition 2012; 28: 1022-1027. doi:10.1016/j.nut.2012.01.017
- 450. Stanga Z, Brunner A, Leuenberger M et al. Nutrition in clinical practice-the refeeding syndrome: illustrative cases and guidelines for prevention and treatment. Eur J Clin Nutr 2008; 62: 687-694. doi:10.1038/sj.ejcn.1602854
- 451. Stippler D, Bode V, Fischer M et al. Proposal for a new practicable categorization system for food for special medical purposes Enteral nutritional products. Clin Nutr ESPEN 2015; 10: e219-e223. doi:10.1016/j.clnesp.2015.07.003
- 452. Burden ST, Hill J, Shaffer JL et al. An unblinded randomised controlled trial of preoperative oral supplements in colorectal cancer patients. J Hum Nutr Diet 2011; 24: 441-448. doi:10.1111/j.1365-277X.2011.01188.x
- 453. Daniels SL, Lee MJ, George J et al. Prehabilitation in elective abdominal cancer surgery in older patients: systematic review and meta-analysis. BJS Open 2020; 4: 1022-1041. doi:10.1002/bjs5.50347

- 454. Bruns ERJ, Argillander TE, Van Den Heuvel B et al. Oral Nutrition as a Form of Pre-Operative Enhancement in Patients Undergoing Surgery for Colorectal Cancer: A Systematic Review. Surg Infect (Larchmt) 2018; 19: 1-10. doi:10.1089/sur.2017.143
- 455. Kong SH, Lee HJ, Na JR et al. Effect of perioperative oral nutritional supplementation in malnourished patients who undergo gastrectomy: A prospective randomized trial. Surgery 2018; 164: 1263-1270. doi:10.1016/j.surg.2018.05.017
- 456. Deftereos I, Yeung JM, Arslan J et al. Preoperative Nutrition Intervention in Patients Undergoing Resection for Upper Gastrointestinal Cancer: Results from the Multi-Centre NOURISH Point Prevalence Study. Nutrients 2021; 13. doi:10.3390/nu13093205
- 457. Grass F, Demartines N. Compliance with preoperative oral nutritional supplements in patients at nutritional risk: Only a question of will? Eur J Clin Nutr 2015. 1 vol.
- 458. Nichols E, O'Hara NN, Degani Y et al. Patient preferences for nutritional supplementation to improve fracture healing: a discrete choice experiment. BMJ Open 2018; 8: e019685. doi:10.1136/bmjopen-2017-019685
- 459. Morlion BJ, Stehle P, Wachtler P et al. Total parenteral nutrition with glutamine dipeptide after major abdominal surgery: a randomized, double-blind, controlled study. Ann Surg 1998; 227: 302-308. doi:10.1097/00000658-199802000-00022
- 460. Lakananurak N, Gramlich L. The Role of Preoperative Parenteral Nutrition. Nutrients 2020; 12: 1320. doi:10.3390/nu12051320
- 461. Hill GL. Impact of nutritional support on the clinical outcome of the surgical patient. Clin Nutr 1994; 13: 331-340. doi:10.1016/0261-5614(94)90021-3
- 462. Huang ZX, Zhang HH, Zhang WT et al. Effect of Short-Term Preoperative Parenteral Nutrition Support for Gastric Cancer Patients with Sarcopenia: a Propensity Score Matching Analysis. J Gastrointest Surg 2022; 26: 1362-1372. doi:10.1007/s11605-021-05185-w
- 463. McClave SA, Martindale RG, Vanek VW et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2009; 33: 277-316. doi:10.1177/0148607109335234
- 464. Hughes MJ, Hackney RJ, Lamb PJ et al. Prehabilitation Before Major Abdominal Surgery: A Systematic Review and Meta-analysis. World J Surg 2019; 43: 1661-1668. doi:10.1007/s00268-019-04950-y
- 465. Hur H, Kim SG, Shim JH et al. Effect of early oral feeding after gastric cancer surgery: a result of randomized clinical trial. Surgery 2011; 149: 561-568. doi:10.1016/j.surg.2010.10.003
- 466. Klek S, Sierzega M, Szybinski P et al. Perioperative nutrition in malnourished surgical cancer patients a prospective, randomized, controlled clinical trial. Clin Nutr 2011; 30: 708-713. doi:10.1016/j.clnu.2011.07.007

- 467. Williams DGA, Ohnuma T, Krishnamoorthy V et al. Postoperative Utilization of Oral Nutrition Supplements in Surgical Patients in US Hospitals. JPEN J Parenter Enteral Nutr 2021; 45: 596-606. doi:10.1002/jpen.1862
- 468. Kompan L, Kremzar B, Gadzijev E et al. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med 1999; 25: 157-161. doi:10.1007/s001340050809
- 469. Eleftheriadis K, Davies R. Do patients fed enterally post-gastrointestinal surgery experience more complications when fed a fiber-enriched feed compared with a standard feed? A systematic review. Nutr Clin Pract 2021. doi:10.1002/ncp.10805. doi:10.1002/ncp.10805
- 470. Braga M, Gianotti L, Gentilini O et al. Feeding the gut early after digestive surgery: results of a nine-year experience. Clin Nutr 2002; 21: 59-65. doi:10.1054/clnu.2001.0504
- 471. Daly JM, Bonau R, Stofberg P et al. Immediate postoperative jejunostomy feeding. Clinical and metabolic results in a prospective trial. Am J Surg 1987; 153: 198-206. doi:10.1016/0002-9610(87)90815-4
- 472. Delany HM, Carnevale N, Garvey JW et al. Postoperative nutritional support using needle catheter feeding jejunostomy. Ann Surg 1977; 186: 165-170. doi:10.1097/00000658-197708000-00007
- 473. Gabor S, Renner H, Matzi V et al. Early enteral feeding compared with parenteral nutrition after oesophageal or oesophagogastric resection and reconstruction. Br J Nutr 2005; 93: 509-513. doi:10.1079/bin20041383
- 474. Gupta V. Benefits versus risks: a prospective audit. Feeding jejunostomy during esophagectomy. World J Surg 2009; 33: 1432-1438. doi:10.1007/s00268-009-0019-1
- 475. Kemen M, Senkal M, Homann HH et al. Early postoperative enteral nutrition with arginine-omega-3 fatty acids and ribonucleic acid-supplemented diet versus placebo in cancer patients: an immunologic evaluation of Impact. Crit Care Med 1995; 23: 652-659. doi:10.1097/00003246-199504000-00012
- 476. Senkal M, Koch J, Hummel T et al. Laparoscopic needle catheter jejunostomy: modification of the technique and outcome results. Surg Endosc 2004; 18: 307-309. doi:10.1007/s00464-003-9060-6
- 477. Biffi R, Lotti M, Cenciarelli S et al. Complications and long-term outcome of 80 oncology patients undergoing needle catheter jejunostomy placement for early postoperative enteral feeding. Clin Nutr 2000; 19: 277-279. doi:10.1054/clnu.2000.0108
- 478. Bruining HA, Schattenkerk ME, Obertop H et al. Acute abdominal pain due to early postoperative elemental feeding by needle jejunostomy. Surg Gynecol Obstet 1983; 157: 40–42
- 479. Chin KF, Townsend S, Wong W et al. A prospective cohort study of feeding needle catheter jejunostomy in an upper gastrointestinal surgical unit. Clin Nutr 2004; 23: 691-696. doi:10.1016/j.clnu.2003.11.002

- 480. Eddy VA, Snell JE, Morris JA, Jr. Analysis of complications and long-term outcome of trauma patients with needle catheter jejunostomy. Am Surg 1996; 62: 40-44
- 481. Myers JG, Page CP, Stewart RM et al. Complications of needle catheter jejunostomy in 2,022 consecutive applications. Am J Surg 1995; 170: 547-550; discussion 550-541. doi:10.1016/s0002-9610(99)80013-0
- 482. Ramamurthy A, Negi SS, Chaudhary A. Prophylactic tube jejunostomy: a worthwhile undertaking. Surg Today 2008; 38: 420-424. doi:10.1007/s00595-007-3650-1
- 483. Sarr MG. Appropriate use, complications and advantages demonstrated in 500 consecutive needle catheter jejunostomies. Br J Surg 1999; 86: 557-561. doi:10.1046/j.1365-2168.1999.01084.x
- 484. Schattenkerk ME, Obertop H, Bruining H et al. Early postoperative enteral feeding by a needle catheter jejunostomy after 100 oesophageal resections and reconstructions for cancer. Clin Nutr 1984; 3: 47-49
- 485. Sica GS, Sujendran V, Wheeler J et al. Needle catheter jejunostomy at esophagectomy for cancer. J Surg Oncol 2005; 91: 276-279. doi:10.1002/jso.20314
- 486. Strickland GF, Greene FL. Needle-catheter jejunostomy for postoperative nutritional support. South Med J 1986; 79: 1389-1392. doi:10.1097/00007611-198611000-00018
- 487. Vestweber KH, Eypasch E, Paul A et al. [Fine-needle catheter jejunostomy]. Z Gastroenterol 1989; 27 Suppl 2: 69-72
- 488. Yermilov I, Jain S, Sekeris E et al. Utilization of parenteral nutrition following pancreaticoduodenectomy: is routine jejunostomy tube placement warranted? Dig Dis Sci 2009; 54: 1582-1588. doi:10.1007/s10620-008-0526-1
- 489. Dann GC, Squires III MH, Postlewait LM et al. An assessment of feeding jejunostomy tube placement at the time of resection for gastric adenocarcinoma: A seven institution analysis of 837 patients from the US gastric cancer collaborative. J Surg Oncol 2015; 112: 195-202
- 490. Braga M, Capretti G, Pecorelli N et al. A prognostic score to predict major complications after pancreaticoduodenectomy. Ann Surg 2011; 254: 702-707; discussion 707-708. doi:10.1097/SLA.0b013e31823598fb
- 491. Koterazawa Y, Oshikiri T, Hasegawa H et al. Routine placement of feeding jejunostomy tube during esophagectomy increases postoperative complications and does not improve postoperative malnutrition. Dis Esophagus 2020; 33. doi:10.1093/dote/doz021
- 492. Zhuang W, Wu H, Liu H et al. Utility of feeding jejunostomy in patients with esophageal cancer undergoing esophagectomy with a high risk of anastomotic leakage. J Gastrointest Oncol 2021; 12: 433-445. doi:10.21037/jgo-21-133
- 493. Li HN, Chen Y, Dai L et al. A Meta-analysis of Jejunostomy Versus Nasoenteral Tube for Enteral Nutrition Following Esophagectomy. J Surg Res 2021; 264: 553-561. doi:10.1016/j.jss.2021.02.027

- 494. Holmén A, Hayami M, Szabo E et al. Nutritional jejunostomy in esophagectomy for cancer, a national register-based cohort study of associations with postoperative outcomes and survival. Langenbecks Arch Surg 2021; 406: 1415-1423. doi:10.1007/s00423-020-02037-0
- 495. Shen X, Zhuo ZG, Li G et al. Is the routine placement of a feeding jejunostomy during esophagectomy worthwhile?-a systematic review and meta-analysis. Annals of palliative medicine 2021; 10: 4232-4241. doi:10.21037/apm-20-2519
- 496. Hatao F, Chen KY, Wu JM et al. Randomized controlled clinical trial assessing the effects of oral nutritional supplements in postoperative gastric cancer patients. Langenbecks Arch Surg 2017; 402: 203-211. doi:10.1007/s00423-016-1527-8
- 497. Meng Q, Tan S, Jiang Y et al. Post-discharge oral nutritional supplements with dietary advice in patients at nutritional risk after surgery for gastric cancer: A randomized clinical trial. Clin Nutr 2021; 40: 40-46. doi:10.1016/j.clnu.2020.04.043
- 498. Zhu X, Wu Y, Qiu Y et al. Comparative analysis of the efficacy and complications of nasojejunal and jejunostomy on patients undergoing pancreaticoduodenectomy. JPEN J Parenter Enteral Nutr 2014; 38: 996-1002. doi:10.1177/0148607113500694
- 499. Han-Geurts IJ, Hop WC, Verhoef C et al. Randomized clinical trial comparing feeding jejunostomy with nasoduodenal tube placement in patients undergoing oesophagectomy. Br J Surg 2007; 94: 31-35. doi:10.1002/bjs.5283
- 500. Kang YK, Dong L, Ge Y et al. Short-term clinical outcomes of enteral nutrition versus parenteral nutrition after surgery for pancreatic cancer: a meta-analysis. Translational cancer research 2019; 8: 1403-1411. doi:10.21037/tcr.2019.07.47
- 501. Cai J, Yang G, Tao Y et al. A meta-analysis of the effect of early enteral nutrition versus total parenteral nutrition on patients after pancreaticoduodenectomy. HPB (Oxford) 2020; 22: 20-25. doi:10.1016/j.hpb.2019.06.002
- 502. Tanaka M, Heckler M, Mihaljevic AL et al. Meta-analysis of effect of routine enteral nutrition on postoperative outcomes after pancreatoduodenectomy. Br J Surg 2019; 106: 1138-1146. doi:10.1002/bjs.11217
- 503. Markides G, Al-Khaffaf B, Vickers J. Nutritional access routes following oesophagectomy—a systematic review. Eur J Clin Nutr 2011; 65: 565-573
- 504. Zhang L, Liu Y, Gao X et al. Immediate vs. gradual advancement to goal of enteral nutrition after elective abdominal surgery: A multicenter non-inferiority randomized trial. Clin Nutr 2021; 40: 5802-5811. doi:10.1016/j.clnu.2021.10.014
- 505. Zern RT, Clarke-Pearson DL. Pneumatosis intestinalis associated with enteral feeding by catheter jejunostomy. Obstet Gynecol 1985; 65: 81S-83S
- 506. Schloerb PR, Wood JG, Casillan AJ et al. Bowel necrosis caused by water in jejunal feeding. JPEN J Parenter Enteral Nutr 2004; 28: 27-29. doi:10.1177/014860710402800127

- 507. Gaddy MC, Max MH, Schwab CW et al. Small bowel ischemia: a consequence of feeding jejunostomy? South Med J 1986; 79: 180-182. doi:10.1097/00007611-198602000-00011
- 508. Rai J, Flint LM, Ferrara JJ. Small bowel necrosis in association with jejunostomy tube feedings. Am Surg 1996; 62: 1050-1054
- 509. Lawlor DK, Inculet RI, Malthaner RA. Small-bowel necrosis associated with jejunal tube feeding. Can J Surg 1998; 41: 459-462
- 510. Scaife CL, Saffle JR, Morris SE. Intestinal obstruction secondary to enteral feedings in burn trauma patients. J Trauma 1999; 47: 859-863. doi:10.1097/00005373-199911000-00007
- 511. Jorba R, Fabregat J, Borobia FG et al. Small bowel necrosis in association with early postoperative enteral feeding after pancreatic resection. Surgery 2000; 128: 111-112. doi:10.1067/msy.2000.104119
- 512. Löser C, Aschl G, Hebuterne X et al. ESPEN guidelines on artificial enteral nutrition--percutaneous endoscopic gastrostomy (PEG). Clin Nutr 2005; 24: 848-861
- 513. Constansia RDN, Hentzen J, Hogenbirk RNM et al. Actual postoperative protein and calorie intake in patients undergoing major open abdominal cancer surgery: A prospective, observational cohort study. Nutr Clin Pract 2022; 37: 183-191. doi:10.1002/ncp.10678
- 514. Haverkort EB, Binnekade JM, de Haan RJ et al. Suboptimal intake of nutrients after esophagectomy with gastric tube reconstruction. J Acad Nutr Diet 2012; 112: 1080-1087. doi:10.1016/j.jand.2012.03.032
- 515. Lidoriki I, Schizas D, Mylonas KS et al. Oral Nutritional Supplementation Following Upper Gastrointestinal Cancer Surgery: A Prospective Analysis Exploring Potential Barriers to Compliance. J Am Coll Nutr 2020; 39: 650-656. doi:10.1080/07315724.2020.1723453
- 516. Baker M, Halliday V, Williams RN et al. A systematic review of the nutritional consequences of esophagectomy. Clin Nutr 2016; 35: 987-994. doi:10.1016/j.clnu.2015.08.010
- 517. Bae JM, Park JW, Yang HK et al. Nutritional status of gastric cancer patients after total gastrectomy. World J Surg 1998; 22: 254-260; discussion 260-251. doi:10.1007/s002689900379
- 518. Bowrey DJ, Baker M, Halliday V et al. A randomised controlled trial of six weeks of home enteral nutrition versus standard care after oesophagectomy or total gastrectomy for cancer: report on a pilot and feasibility study. Trials 2015; 16: 531. doi:10.1186/s13063-015-1053-y
- 519. Ryan AM, Reynolds JV, Healy L et al. Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery: results of a double-blinded randomized controlled trial. Ann Surg 2009; 249: 355-363. doi:10.1097/SLA.0b013e31819a4789
- 520. Grass F, Benoit M, Coti Bertrand P et al. Nutritional Status Deteriorates Postoperatively Despite Preoperative Nutritional Support. Ann Nutr Metab 2016; 68: 291-297. doi:10.1159/000447368

- 521. Peterson SJ, Tsai AA, Scala CM et al. Adequacy of oral intake in critically ill patients 1 week after extubation. J Am Diet Assoc 2010; 110: 427-433. doi:10.1016/j.jada.2009.11.020
- 522. Ouattara M, D'Journo XB, Loundou A et al. Body mass index kinetics and risk factors of malnutrition one year after radical oesophagectomy for cancer. Eur J Cardiothorac Surg 2012; 41: 1088-1093. doi:10.1093/ejcts/ezr182
- 523. Chen X, Zhao G, Zhu L. Home enteral nutrition for postoperative elderly patients with esophageal cancer. Annals of palliative medicine 2021; 10: 278-284. doi:10.21037/apm-20-2197
- 524. Wobith M, Wehle L, Haberzettl D et al. Needle Catheter Jejunostomy in Patients Undergoing Surgery for Upper Gastrointestinal and Pancreato-Biliary Cancer-Impact on Nutritional and Clinical Outcome in the Early and Late Postoperative Period. Nutrients 2020; 12. doi:10.3390/nu12092564
- 525. Xueting H, Li L, Meng Y et al. Home enteral nutrition and oral nutritional supplements in postoperative patients with upper gastrointestinal malignancy: A systematic review and meta-analysis. Clin Nutr 2021; 40: 3082-3093. doi:10.1016/j.clnu.2020.11.023
- 526. Miyazaki Y, Omori T, Fujitani K et al. Oral nutritional supplements versus a regular diet alone for body weight loss after gastrectomy: a phase 3, multicenter, open-label randomized controlled trial. Gastric Cancer 2021; 24: 1150-1159. doi:10.1007/s10120-021-01188-3
- 527. Gabrielson DK, Scaffidi D, Leung E et al. Use of an abridged scored Patient-Generated Subjective Global Assessment (abPG-SGA) as a nutritional screening tool for cancer patients in an outpatient setting. Nutr Cancer 2013; 65: 234-239. doi:10.1080/01635581.2013.755554
- 528. Tropea P, Schlieter H, Sterpi I et al. Rehabilitation, the Great Absentee of Virtual Coaching in Medical Care: Scoping Review. J Med Internet Res 2019; 21: e12805. doi:10.2196/12805
- 529. Schmidt JB, Pedersen SD, Gregersen NT et al. Effects of RYGB on energy expenditure, appetite and glycaemic control: a randomized controlled clinical trial. Int J Obes (Lond) 2016; 40: 281-290. doi:10.1038/ijo.2015.162
- 530. Moizé V, Andreu A, Rodríguez L et al. Protein intake and lean tissue mass retention following bariatric surgery. Clin Nutr 2013; 32: 550-555. doi:10.1016/j.clnu.2012.11.007
- 531. Raftopoulos I, Bernstein B, O'Hara K et al. Protein intake compliance of morbidly obese patients undergoing bariatric surgery and its effect on weight loss and biochemical parameters. Surg Obes Relat Dis 2011; 7: 733-742. doi:10.1016/j.soard.2011.07.008
- 532. Ito MK, Gonçalves VSS, Faria S et al. Effect of Protein Intake on the Protein Status and Lean Mass of Post-Bariatric Surgery Patients: a Systematic Review. Obes Surg 2017; 27: 502-512. doi:10.1007/s11695-016-2453-0
- 533. Sherf Dagan S, Tovim TB, Keidar A et al. Inadequate protein intake after laparoscopic sleeve gastrectomy surgery is associated with a greater fat free mass loss. Surg Obes Relat Dis 2017; 13: 101-109. doi:10.1016/j.soard.2016.05.026

- 534. Beebe ML, Crowley N. Can Hypocaloric, High-Protein Nutrition Support Be Used in Complicated Bariatric Patients to Promote Weight Loss? Nutr Clin Pract 2015; 30: 522-529. doi:10.1177/0884533615591605
- 535. Campos-Nonato I, Hernandez L, Barquera S. Effect of a High-Protein Diet versus Standard-Protein Diet on Weight Loss and Biomarkers of Metabolic Syndrome: A Randomized Clinical Trial. Obesity Facts 2017; 10: 238-251. doi:10.1159/000471485
- 536. Moizé V, Pi-Sunyer X, Vidal J et al. Effect on Nitrogen Balance, Thermogenesis, Body Composition, Satiety, and Circulating Branched Chain Amino Acid Levels up to One Year after Surgery: Protocol of a Randomized Controlled Trial on Dietary Protein During Surgical Weight Loss. JMIR Research Protocols 2016; 5: e220. doi:10.2196/resprot.6438
- 537. Choban P, Dickerson R, Malone A et al. A.S.P.E.N. Clinical Guidelines. Journal of Parenteral and Enteral Nutrition 2013; 37: 714-744. doi:10.1177/0148607113499374
- 538. Patel NS, Doycheva I, Peterson MR et al. Effect of Weight Loss on Magnetic Resonance Imaging Estimation of Liver Fat and Volume in Patients With Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol 2015; 13: 561-568.e561. doi:10.1016/j.cgh.2014.08.039
- 539. Wolf RM, Oshima K, Canner JK et al. Impact of a preoperative low-calorie diet on liver histology in patients with fatty liver disease undergoing bariatric surgery. Surg Obes Relat Dis 2019; 15: 1766-1772. doi:10.1016/j.soard.2019.08.013
- 540. Cuenca-Sánchez M, Navas-Carrillo D, Orenes-Piñero E. Controversies Surrounding High-Protein Diet Intake: Satiating Effect and Kidney and Bone Health. Adv Nutr 2015; 6: 260-266. doi:10.3945/an.114.007716
- 541. Peterson LA, Cheskin LJ, Furtado M et al. Malnutrition in Bariatric Surgery Candidates: Multiple Micronutrient Deficiencies Prior to Surgery. Obes Surg 2015; 26: 833-838. doi:10.1007/s11695-015-1844-y
- 542. Sánchez A, Rojas P, Basfi-fer K et al. Micronutrient Deficiencies in Morbidly Obese Women Prior to Bariatric Surgery. Obes Surg 2015; 26: 361-368. doi:10.1007/s11695-015-1773-9
- 543. Jäger P, Wolicki A, Spohnholz J et al. Review: Sex-Specific Aspects in the Bariatric Treatment of Severely Obese Women. Int J Environ Res Public Health 2020; 17: 2734. doi:10.3390/ijerph17082734
- 544. de Zwaan M. Die S3-Leitlinie Adipositaschirurgie. In, Psychosoziale Aspekte der Adipositas-Chirurgie: Springer Berlin Heidelberg; 2018: 239-244. doi:10.1007/978-3-662-57364-8_19
- 545. Muschitz C, Kocijan R, Haschka J et al. The Impact of Vitamin D, Calcium, Protein Supplementation, and Physical Exercise on Bone Metabolism After Bariatric Surgery: The BABS Study. J Bone Miner Res 2016; 31: 672-682. doi:10.1002/jbmr.2707
- 546. Zarshenas N, Tapsell LC, Neale EP et al. The Relationship Between Bariatric Surgery and Diet Quality: a Systematic Review. Obes Surg 2020; 30: 1768-1792. doi:10.1007/s11695-020-04392-9

- 547. Allied Health Sciences Section Ad Hoc Nutrition C, Aills L, Blankenship J et al. ASMBS Allied Health Nutritional Guidelines for the Surgical Weight Loss Patient. Surg Obes Relat Dis 2008; 4: S73-108. doi:10.1016/j.soard.2008.03.002
- 548. Olmos MA, Vazquez MJ, Gorria MJ et al. Effect of parenteral nutrition on nutrition status after bariatric surgery for morbid obesity. JPEN J Parenter Enteral Nutr 2005; 29: 445-450. doi:10.1177/0148607105029006445
- 549. Ballesta C, Berindoague R, Cabrera M et al. Management of anastomotic leaks after laparoscopic Roux-en-Y gastric bypass. Obes Surg 2008; 18: 623-630. doi:10.1007/s11695-007-9297-6
- 550. Gonzalez R, Nelson LG, Gallagher SF et al. Anastomotic leaks after laparoscopic gastric bypass. Obes Surg 2004; 14: 1299-1307. doi:10.1381/0960892042583978
- 551. Gonzalez R, Sarr MG, Smith CD et al. Diagnosis and contemporary management of anastomotic leaks after gastric bypass for obesity. J Am Coll Surg 2007; 204: 47-55. doi:10.1016/j.jamcollsurg.2006.09.023
- 552. Thibault R, Huber O, Azagury DE et al. Twelve key nutritional issues in bariatric surgery. Clin Nutr 2016; 35: 12-17. doi:10.1016/j.clnu.2015.02.012
- 553. Ribeiro HS, Coury NC, de Vasconcelos Generoso S et al. Energy Balance and Nutrition Status: A Prospective Assessment of Patients Undergoing Liver Transplantation. Nutr Clin Pract 2020; 35: 126-132. doi:10.1002/ncp.10323
- Ohura T, Nakajo T, Okada S et al. Evaluation of effects of nutrition intervention on healing of pressure ulcers and nutritional states (randomized controlled trial). Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society 2011; 19: 330-336. doi:10.1111/j.1524-475X.2011.00691.x
- 555. van Anholt RD, Sobotka L, Meijer EP et al. Specific nutritional support accelerates pressure ulcer healing and reduces wound care intensity in non-malnourished patients. Nutrition 2010; 26: 867-872. doi:10.1016/j.nut.2010.05.009
- 556. Cereda E, Gini A, Pedrolli C et al. Disease-specific, versus standard, nutritional support for the treatment of pressure ulcers in institutionalized older adults: a randomized controlled trial. J Am Geriatr Soc 2009; 57: 1395-1402. doi:10.1111/j.1532-5415.2009.02351.x
- 557. Frías Soriano L, Lage Vázquez MA, Maristany CP et al. The effectiveness of oral nutritional supplementation in the healing of pressure ulcers. J Wound Care 2004; 13: 319-322. doi:10.12968/jowc.2004.13.8.26654
- 558. Berger MM, Binnert C, Chiolero RL et al. Trace element supplementation after major burns increases burned skin trace element concentrations and modulates local protein metabolism but not whole-body substrate metabolism. Am J Clin Nutr 2007; 85: 1301-1306. doi:10.1093/ajcn/85.5.1301
- 559. Harrison J, McKiernan J, Neuberger JM. A prospective study on the effect of recipient nutritional status on outcome in liver transplantation. Transplant international: official journal of the European Society for Organ Transplantation 1997; 10: 369-374. doi:10.1007/s001470050072

- 560. Langer G, Großmann K, Fleischer S et al. Nutritional interventions for liver-transplanted patients. Cochrane Database Syst Rev 2012. doi:10.1002/14651858.CD007605.pub2: Cd007605. doi:10.1002/14651858.CD007605.pub2
- 561. Plauth M, Merli M, Kondrup J et al. ESPEN guidelines for nutrition in liver disease and transplantation. Clin Nutr 1997; 16: 43-55. doi:10.1016/s0261-5614(97)80022-2
- Weimann A, Kuse ER, Bechstein WO et al. Perioperative parenteral and enteral nutrition for patients undergoing orthotopic liver transplantation. Results of a questionnaire from 16 European transplant units. Transplant international: official journal of the European Society for Organ Transplantation 1998; 11 Suppl 1: S289-291. doi:10.1007/s001470050481
- 563. Krapf J, Schuhbeck A, Wendel T et al. Assessment of the Clinical Impact of a Liver-Specific, BCAA-Enriched Diet in Major Liver Surgery. Transplant Proc 2021; 53: 624-629. doi:10.1016/j.transproceed.2020.09.013
- 564. Yirui L, Yin W, Juan L et al. The clinical effect of early enteral nutrition in liver-transplanted patients: a systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2021; 45: 101594. doi:10.1016/j.clinre.2020.101594
- 565. Hammad A, Kaido T, Aliyev V et al. Correction: Hammad, A.; Kaido, T.; Aliyev V.; Mandato C.; Uemoto S. Nutritional Therapy in Liver Transplantation. Nutrients 2017; 9. E1126. Nutrients 2018; 10. doi:10.3390/nu10122006
- 566. [Anonym]. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol 2019; 70: 172-193. doi:10.1016/j.jhep.2018.06.024
- 568. Murray M, Grogan TA, Lever J et al. Comparison of tacrolimus absorption in transplant patients receiving continuous versus interrupted enteral nutritional feeding. Ann Pharmacother 1998; 32: 633-636. doi:10.1345/aph.17181
- 569. Hasse JM, Blue LS, Liepa GU et al. Early enteral nutrition support in patients undergoing liver transplantation. JPEN J Parenter Enteral Nutr 1995; 19: 437-443. doi:10.1177/0148607195019006437
- 570. Ma M, Wang X, Li J et al. Efficacy and safety of probiotics and prebiotics in liver transplantation: A systematic review and meta-analysis. Nutr Clin Pract 2021; 36: 808-819. doi:10.1002/ncp.10650
- 571. Pescovitz MD, Mehta PL, Leapman SB et al. Tube jejunostomy in liver transplant recipients. Surgery 1995; 117: 642-647. doi:10.1016/s0039-6060(95)80007-7
- 572. Rovera GM, Graham TO, Hutson WR et al. Nutritional management of intestinal allograft recipients. Transplant Proc 1998; 30: 2517-2518. doi:10.1016/s0041-1345(98)00706-4
- 573. Rovera GM, Schoen RE, Goldbach B et al. Intestinal and multivisceral transplantation: dynamics of nutritional management and functional autonomy.

- JPEN J Parenter Enteral Nutr 2003; 27: 252-259. doi:10.1177/0148607103027004252
- 574. Rovera GM, Strohm S, Bueno J et al. Nutritional monitoring of pediatric intestinal transplant recipients. Transplant Proc 1998; 30: 2519-2520. doi:10.1016/s0041-1345(98)00707-6
- 575. Schulz RJ, Dignass A, Pascher A et al. New dietary concepts in small bowel transplantation. Transplant Proc 2002; 34: 893-895. doi:10.1016/s0041-1345(02)02656-8
- 576. Kuse ER, Kotzerke J, Muller S et al. Hepatic reticuloendothelial function during parenteral nutrition including an MCT/LCT or LCT emulsion after liver transplantation a double-blind study. Transplant international: official journal of the European Society for Organ Transplantation 2002; 15: 272-277. doi:10.1007/s00147-002-0393-1
- 577. Delafosse B, Viale JP, Pachiaudi C et al. Long- and medium-chain triglycerides during parenteral nutrition in critically ill patients. Am J Physiol 1997; 272: E550-555. doi:10.1152/ajpendo.1997.272.4.E550
- 578. Zhu X, Wu Y, Qiu Y et al. Effects of omega-3 fish oil lipid emulsion combined with parenteral nutrition on patients undergoing liver transplantation. JPEN J Parenter Enteral Nutr 2013; 37: 68-74. doi:10.1177/0148607112440120
- 579. Plank LD, McCall JL, Gane EJ et al. Pre- and postoperative immunonutrition in patients undergoing liver transplantation: a pilot study of safety and efficacy. Clin Nutr 2005; 24: 288-296. doi:10.1016/j.clnu.2004.11.007
- 580. Plank LD, Mathur S, Gane EJ et al. Perioperative immunonutrition in patients undergoing liver transplantation: a randomized double-blind trial. Hepatology 2015; 61: 639-647. doi:10.1002/hep.27433
- 581. Nickkholgh A, Schneider H, Encke J et al. PROUD: effects of preoperative long-term immunonutrition in patients listed for liver transplantation. Trials 2007; 8: 20. doi:10.1186/1745-6215-8-20
- 582. Längle F, Roth E, Steininger R et al. Arginase release following liver reperfusion evidence of hemodynamic action of arginase infusions. Transplantation 1995; 59: 1542-1548. doi:10.1097/00007890-199506150-00007
- 583. Längle F, Steininger R, Waldmann E et al. Improvement of cardiac output and liver blood flow and reduction of pulmonary vascular resistance by intravenous infusion of L-arginine during the early reperfusion period in pig liver transplantation. Transplantation 1997; 63: 1225-1233. doi:10.1097/00007890-199705150-00007
- 584. Hoffmann K, Buchler MW, Schemmer P. Supplementation of amino acids to prevent reperfusion injury after liver surgery and transplantation--where do we stand today? Clin Nutr 2011; 30: 143-147. doi:10.1016/j.clnu.2010.09.006
- 585. Al-Saeedi M, Liang R, Schultze DP et al. Glycine protects partial liver grafts from Kupffer cell-dependent ischemia-reperfusion injury without negative effect on regeneration. Amino Acids 2019; 51: 903-911. doi:10.1007/s00726-019-02722-5

- 586. Li YS, Li JS, Jiang JW et al. Glycyl-glutamine-enriched long-term total parenteral nutrition attenuates bacterial translocation following small bowel transplantation in the pig. J Surg Res 1999; 82: 106-111. doi:10.1006/jsre.1998.5525
- 587. Xiao J, Peng Z, Liao Y et al. Organ transplantation and gut microbiota: current reviews and future challenges. American journal of translational research 2018; 10: 3330-3344
- 588. Cornide-Petronio ME, Alvarez-Mercado AI, Jimenez-Castro MB et al. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12: 284. doi:10.3390/nu12020284
- 589. Andersen S, Staudacher H, Weber N et al. Pilot study investigating the effect of enteral and parenteral nutrition on the gastrointestinal microbiome post-allogeneic transplantation. Br J Haematol 2020; 188: 570-581. doi:10.1111/bjh.16218
- 590. Giusto M, Lattanzi B, Di Gregorio V et al. Changes in nutritional status after liver transplantation. World J Gastroenterol 2014; 20: 10682-10690. doi:10.3748/wjg.v20.i31.10682
- 591. Marín VB, Rebollo MG, Castillo-Duran CD et al. Controlled study of early postoperative parenteral nutrition in children. J Pediatr Surg 1999; 34: 1330-1335. doi:10.1016/s0022-3468(99)90005-2
- 592. Peng Y, Xiao D, Xiao S et al. Early enteral feeding versus traditional feeding in neonatal congenital gastrointestinal malformation undergoing intestinal anastomosis: A randomized multicenter controlled trial of an enhanced recovery after surgery (ERAS) component. J Pediatr Surg 2021; 56: 1479-1484. doi:10.1016/j.jpedsurg.2021.02.067
- 593. Tian Y, Zhu H, Gulack BC et al. Early enteral feeding after intestinal anastomosis in children: a systematic review and meta-analysis of randomized controlled trials. Pediatr Surg Int 2021; 37: 403-410. doi:10.1007/s00383-020-04830-w
- 594. Chen X, Zhang M, Song Y et al. Early high-energy feeding in infants following cardiac surgery: a randomized controlled trial. Translational pediatrics 2021; 10: 2439-2448. doi:10.21037/tp-21-360
- 595. Shulman RJ, Phillips S. Parenteral nutrition in infants and children. J Pediatr Gastroenterol Nutr 2003; 36: 587-607. doi:10.1097/00005176-200305000-00002
- 596. Deutsche Arbeitsgemeinschaft für künstliche Ernährung (DAKE), Österreichische Arbeitsgemeinschaft für künstliche Ernährung (AKE). Empfehlungen zur parenteralen Infusions-und Ernährungstherapie im Kindesalter. Klin Padiatr: 199: 315-317
- 597. Mirtallo J, Canada T, Johnson D et al. Safe practices for parenteral nutrition. JPEN J Parenter Enteral Nutr 2004; 28: S39-70. doi:10.1177/0148607104028006s39
- 598. Amii LA, Moss RL. Nutritional support of the pediatric surgical patient. Curr Opin Pediatr 1999; 11: 237-240. doi:10.1097/00008480-199906000-00012

- 599. Seida JC, Mager DR, Hartling L et al. Parenteral ω-3 Fatty Acid Lipid Emulsions for Children With Intestinal Failure and Other Conditions. Journal of Parenteral and Enteral Nutrition 2012; 37: 44-55. doi:10.1177/0148607112450300
- 600. Bang YK, Park MK, Ju YS et al. Clinical significance of nutritional risk screening tool for hospitalised children with acute burn injuries: a cross-sectional study. J Hum Nutr Diet 2017; 31: 370-378. doi:10.1111/jhn.12518
- 601. Huysentruyt K, Alliet P, Muyshont L et al. The STRONGkids nutritional screening tool in hospitalized children: A validation study. Nutrition 2013; 29: 1356-1361. doi:10.1016/j.nut.2013.05.008
- 602. Gerasimidis K, Keane O, Macleod I et al. A four-stage evaluation of the Paediatric Yorkhill Malnutrition Score in a tertiary paediatric hospital and a district general hospital. Br J Nutr 2010; 104: 751-756. doi:10.1017/s0007114510001121
- 603. McCarthy H, Dixon M, Crabtree I et al. The development and evaluation of the Screening Tool for the Assessment of Malnutrition in Paediatrics (STAMP©) for use by healthcare staff. J Hum Nutr Diet 2012; 25: 311-318. doi:10.1111/j.1365-277x.2012.01234.x
- 604. Chourdakis M, Hecht C, Gerasimidis K et al. Malnutrition risk in hospitalized children: use of 3 screening tools in a large European population. The American Journal of Clinical Nutrition 2016; 103: 1301-1310. doi:10.3945/ajcn.115.110700
- 605. Teixeira AF, Viana KDAL. Nutritional screening in hospitalized pediatric patients: a systematic review. Jornal de Pediatria (Versão em Português) 2016; 92: 343-352. doi:10.1016/j.jpedp.2016.02.009
- 606. Song IK, Kim HJ, Lee JH et al. Ultrasound assessment of gastric volume in children after drinking carbohydrate-containing fluids. Br J Anaesth 2016; 116: 513-517. doi:10.1093/bja/aew031
- 607. Jones Q, Walden A. Early versus Late Parenteral Nutrition in Critically III Adults. Journal of the Intensive Care Society 2011; 12: 338-339. doi:10.1177/175114371101200422
- 608. Jacobs A, Verlinden I, Vanhorebeek I et al. Early Supplemental Parenteral Nutrition in Critically III Children: An Update. J Clin Med 2019; 8: 830. doi:10.3390/jcm8060830
- 609. [Anonym]. ESPGHAN and ESPEN Guidelines Paediatric Parenteral Nutrition Annex: List of Products. J Pediatr Gastroenterol Nutr 2005; 41: S85-S87. doi:10.1097/01.mpg.0000181841.07090.f4
- 610. Fivez T, Kerklaan D, Mesotten D et al. Early versus Late Parenteral Nutrition in Critically III Children. N Engl J Med 2016; 374: 1111-1122. doi:10.1056/nejmoa1514762
- 611. van Puffelen E, Vanhorebeek I, Joosten KFM et al. Early versus late parenteral nutrition in critically ill, term neonates: a preplanned secondary subgroup analysis of the PEPaNIC multicentre, randomised controlled trial. The Lancet Child & Adolescent Health 2018; 2: 505-515. doi:10.1016/s2352-4642(18)30131-7

- on Puffelen E, Hulst JM, Vanhorebeek I et al. Outcomes of Delaying Parenteral Nutrition for 1 Week vs Initiation Within 24 Hours Among Undernourished Children in Pediatric Intensive Care. JAMA Network Open 2018; 1: e182668. doi:10.1001/jamanetworkopen.2018.2668
- 613. van Goudoever JB, Carnielli V, Darmaun D et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin Nutr 2018; 37: 2315-2323. doi:10.1016/j.clnu.2018.06.945
- 614. Banks MD, Ross LJ, Webster J et al. Pressure ulcer healing with an intensive nutrition intervention in an acute setting: a pilot randomised controlled trial. J Wound Care 2016; 25: 384-392. doi:10.12968/jowc.2016.25.7.384
- 615. Kurmann S, Burrowes J. Nutrition of non-critically ill wound patients-special supplements. Aktuelle Ernährungsmedizin 2009; 34: 269-277
- 616. Daher GS, Choi KY, Wells JW et al. A Systematic Review of Oral Nutritional Supplement and Wound Healing. Ann Otol Rhinol Laryngol 2022. doi:10.1177/00034894211069437: 34894211069437. doi:10.1177/00034894211069437
- 617. Collins CE, Kershaw J, Brockington S. Effect of nutritional supplements on wound healing in home-nursed elderly: a randomized trial. Nutrition 2005; 21: 147-155. doi:10.1016/j.nut.2004.10.006
- 618. Campos PP, Bakhle YS, Andrade SP. Mechanisms of wound healing responses in lupus-prone New Zealand White mouse strain. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society 2008; 16: 416-424. doi:10.1111/j.1524-475X.2008.00381.x
- 619. Schneider KL, Yahia N. Effectiveness of Arginine Supplementation on Wound Healing in Older Adults in Acute and Chronic Settings: A Systematic Review. Adv Skin Wound Care 2019; 32: 457-462. doi:10.1097/01.asw.0000579700.20404.56
- 620. Ekinci O, Yanık S, Terzioğlu Bebitoğlu B et al. Effect of Calcium β-Hydroxy-β-Methylbutyrate (CaHMB), Vitamin D, and Protein Supplementation on Postoperative Immobilization in Malnourished Older Adult Patients With Hip Fracture. Nutr Clin Pract 2016; 31: 829-835. doi:10.1177/0884533616629628
- 621. Blass SC, Goost H, Tolba RH et al. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: A PRCT. Clin Nutr 2012; 31: 469-475. doi:10.1016/j.clnu.2012.01.002
- 622. Farreras N, Artigas V, Cardona D et al. Effect of early postoperative enteral immunonutrition on wound healing in patients undergoing surgery for gastric cancer. Clin Nutr 2005; 24: 55-65. doi:10.1016/j.clnu.2004.07.002
- 623. Razzaghi R, Pidar F, Momen-Heravi M et al. Magnesium Supplementation and the Effects on Wound Healing and Metabolic Status in Patients with Diabetic Foot Ulcer: a Randomized, Double-Blind, Placebo-Controlled Trial. Biol Trace Elem Res 2017; 181: 207-215. doi:10.1007/s12011-017-1056-5

- 624. Afzali H, Jafari Kashi AH, Momen Heravi M et al. The effects of magnesium and vitamin E co supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double blind, placebo controlled trial. Wound Repair and Regeneration 2019; 27: 277-284. doi:10.1111/wrr.12701
- 625. Momen-Heravi M, Barahimi E, Razzaghi R et al. The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Wound Repair and Regeneration 2017; 25: 512-520. doi:10.1111/wrr.12537
- 626. Mohseni S, Bayani M, Bahmani F et al. The beneficial effects of probiotic administration on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Diabetes Metab Res Rev 2017; 34: e2970. doi:10.1002/dmrr.2970
- 627. Soleimani Z, Hashemdokht F, Bahmani F et al. Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. J Diabetes Complications 2017; 31: 1394-1400. doi:10.1016/j.jdiacomp.2017.06.010
- 628. Armstrong DG, Hanft JR, Driver VR et al. Effect of oral nutritional supplementation on wound healing in diabetic foot ulcers: a prospective randomized controlled trial. Diabet Med 2014; 31: 1069-1077. doi:10.1111/dme.12509
- 629. Basiri R, Spicer MT, Levenson CW et al. Nutritional Supplementation Concurrent with Nutrition Education Accelerates the Wound Healing Process in Patients with Diabetic Foot Ulcers. Biomedicines 2020; 8: 263. doi:10.3390/biomedicines8080263
- 630. Moore ZEH, Corcoran MA, Patton D. Nutritional interventions for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev 2020; 2020. doi:10.1002/14651858.cd011378.pub2
- 631. Theilla M, Singer P, Cohen J et al. A diet enriched in eicosapentanoic acid, gamma-linolenic acid and antioxidants in the prevention of new pressure ulcer formation in critically ill patients with acute lung injury: A randomized, prospective, controlled study. Clin Nutr 2007; 26: 752-757. doi:10.1016/j.clnu.2007.06.015
- 632. Houwing RH, Rozendaal M, Wouters-Wesseling W et al. A randomised, double-blind assessment of the effect of nutritional supplementation on the prevention of pressure ulcers in hip-fracture patients. Clin Nutr 2003; 22: 401-405. doi:10.1016/s0261-5614(03)00039-6
- 633. Bauer JD, Isenring E, Waterhouse M. The effectiveness of a specialised oral nutrition supplement on outcomes in patients with chronic wounds: a pragmatic randomised study. J Hum Nutr Diet 2013; 26: 452-458. doi:10.1111/jhn.12084
- 634. Stratton RJ, Ek AC, Engfer M et al. Enteral nutritional support in prevention and treatment of pressure ulcers: a systematic review and meta-analysis. Ageing research reviews 2005; 4: 422-450. doi:10.1016/j.arr.2005.03.005

- 635. Cereda E, Klersy C, Serioli M et al. A nutritional formula enriched with arginine, zinc, and antioxidants for the healing of pressure ulcers: a randomized trial. Ann Intern Med 2015; 162: 167-174. doi:10.7326/m14-0696
- 636. Song YP, Wang L, Yu HR et al. Zinc Therapy Is a Reasonable Choice for Patients With Pressure Injuries: A Systematic Review and Meta Analysis. Nutr Clin Pract 2020; 35: 1001-1009. doi:10.1002/ncp.10485
- 637. Theilla M, Schwartz B, Cohen J et al. Impact of a Nutritional Formula Enriched in Fish Oil and Micronutrients on Pressure Ulcers in Critical Care Patients. Am J Crit Care 2012; 21: e102-e109. doi:10.4037/ajcc2012187
- 638. Leigh B, Desneves K, Rafferty J et al. The effect of different doses of an arginine-containing supplement on the healing of pressure ulcers. J Wound Care 2012; 21: 150-156. doi:10.12968/jowc.2012.21.3.150
- 639. Wong A, Chew A, Wang CM et al. The use of a specialised amino acid mixture for pressure ulcers: A placebo-controlled trial. J Wound Care 2014; 23: 259-269. doi:10.12968/jowc.2014.23.5.259
- 640. Wasiak J, Cleland H, Jeffery R. Early versus delayed enteral nutrition support for burn injuries. Cochrane Database Syst Rev 2006. doi:10.1002/14651858.CD005489.pub2: Cd005489. doi:10.1002/14651858.CD005489.pub2
- 641. Masters B, Aarabi S, Sidhwa F et al. High-carbohydrate, high-protein, low-fat versus low-carbohydrate, high-protein, high-fat enteral feeds for burns. Cochrane Database Syst Rev 2012. doi:10.1002/14651858.cd006122.pub3. doi:10.1002/14651858.cd006122.pub3
- 642. Shields BA, VanFosson CA, Pruskowski KA et al. High-Carbohydrate vs High-Fat Nutrition for Burn Patients. Nutr Clin Pract 2019; 34: 688-694. doi:10.1002/ncp.10396
- 643. Kurmis R, Greenwood J, Aromataris E. Trace Element Supplementation Following Severe Burn Injury: A Systematic Review and Meta-Analysis. Journal of burn care & research: official publication of the American Burn Association 2016; 37: 143-159. doi:10.1097/bcr.00000000000000259
- 644. Babajafari S, Akhlaghi M, Mazloomi SM et al. The effect of isolated soy protein adjunctive with flaxseed oil on markers of inflammation, oxidative stress, acute phase proteins, and wound healing of burn patients; a randomized clinical trial. Burns 2018; 44: 140-149. doi:10.1016/j.burns.2017.05.014
- 645. Chen L-R, Yang B-S, Chang C-N et al. Additional Vitamin and Mineral Support for Patients with Severe Burns: A Nationwide Experience from a Catastrophic Color-Dust Explosion Event in Taiwan. Nutrients 2018; 10: 1782. doi:10.3390/nu10111782
- 646. Mayes T, Gottschlich MM, James LE et al. Clinical Safety and Efficacy of Probiotic Administration Following Burn Injury. Journal of Burn Care & Research 2015; 36: 92-99. doi:10.1097/bcr.00000000000139
- 647. Najmi M, Vahdat Shariatpanahi Z, Tolouei M et al. Effect of oral olive oil on healing of 10–20% total body surface area burn wounds in hospitalized patients. Burns 2015; 41: 493-496. doi:10.1016/j.burns.2014.08.010

648. Heyland DK, Wibbenmeyer L, Pollack JA et al. A Randomized Trial of Enteral Glutamine for Treatment of Burn Injuries. N Engl J Med 2022; 387: 1001-1010. doi:10.1056/NEJMoa2203364

